搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十五章四边形同步测试练习题(无超纲)

    2022年必考点解析京改版八年级数学下册第十五章四边形同步测试练习题(无超纲)第1页
    2022年必考点解析京改版八年级数学下册第十五章四边形同步测试练习题(无超纲)第2页
    2022年必考点解析京改版八年级数学下册第十五章四边形同步测试练习题(无超纲)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课时训练

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共25页。
    京改版八年级数学下册第十五章四边形同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是(  )

    A.75° B.60° C.55° D.40°
    2、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )

    A. B. C. D.
    3、四边形的内角和与外角和的数量关系,正确的是(  )
    A.内角和比外角和大180° B.外角和比内角和大180°
    C.内角和比外角和大360° D.内角和与外角和相等
    4、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )

    A.1 B.2 C.3 D.4
    5、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( ).
    A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,6
    6、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )

    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
    7、下列几何图形既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    8、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )

    A.16 B.12 C.8 D.4
    9、在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    10、下列图形中,是中心对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.
    2、正五边形的一个内角与一个外角的比______.
    3、如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _____.

    4、一个正多边形的内角和为540°,则它的一个外角等于 ______.
    5、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、综合与实践
    (1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为    .

    (2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
    (3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为    .
    2、如图,在Rt△ABC中,∠ACB=90°.

    (1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
    (2)求证:四边形CEDF是矩形.
    3、如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.

    (1)求证:;
    (2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角.
    4、阅读探究
    小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.
    小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,
    (1)图1中的面积为________.

    实践应用
    参考小明解决问题的方法,回答下列问题:
    (2)图2是一个的正方形网格(每个小正方形的边长为1).
    ①利用构图法在答题卡的图2中画出三边长分别为,,的格点.
    ②的面积为________(写出计算过程).
    拓展延伸
    (3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).

    5、如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.


    -参考答案-
    一、单选题
    1、C
    【分析】
    证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
    【详解】
    解:∵点E,F分别是AB,AC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥BC,
    ∴∠AEF=∠B=55°,
    故选:C.
    【点睛】
    本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
    2、A
    【分析】
    根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
    【详解】
    解:∵ED=EM,MF=FN,
    ∴EF=DN,
    ∴DN最大时,EF最大,
    ∴N与B重合时DN=DB最大,
    在Rt△ADH中, ∵∠A=60°

    ∴AH=2×=1,DH=,
    ∴BH=AB﹣AH=3﹣1=2,
    ∴DB=,
    ∴EFmax=DB=,
    ∴EF的最大值为.

    故选A
    【点睛】
    本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
    3、D
    【分析】
    直接利用多边形内角和定理分别分析得出答案.
    【详解】
    解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
    D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.
    故选:D.
    【点睛】
    本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.
    4、B
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
    【详解】
    第一个图形是中心对称图形,又是轴对称图形,
    第二个图形是中心对称图形,又是轴对称图形,
    第三个图形不是中心对称图形,是轴对称图形,
    第四个图形不是中心对称图形,是轴对称图形,
    综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
    故选:B.
    【点睛】
    点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【分析】
    将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.
    【详解】
    解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;
    B、因为1+1+14,所以能构成四边形,故该项符合题意;
    D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;
    故选:C.
    【点睛】
    此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.
    6、B
    【分析】
    由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
    B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    C、是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;
    B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
    C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
    D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;
    故选D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、C
    【分析】
    由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,
    ∴OA=OB=8,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=AO=BO=8,
    故选:C.
    【点睛】
    本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.
    9、A
    【分析】
    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.
    【详解】
    解:点关于原点对称的点的坐标是:
    故选A
    【点睛】
    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.
    10、B
    【分析】
    根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    【详解】
    选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
    选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
    故选:.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、6
    【分析】
    根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据题意,得
    (n﹣2)•180=360×2,
    解得:n=6.
    故这个多边形的边数为6.
    故答案为:6.
    【点睛】
    本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.
    2、
    【分析】
    根据公式分别求出一个内角与一个外角的度数,即可得到答案.
    【详解】
    解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,
    ∴正五边形的一个内角与一个外角的比为,
    故答案为:.
    【点睛】
    此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.
    3、
    【分析】
    由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.
    【详解】
    解:如图,连接PO,并延长交l2于点H,

    ∵l1⊥l3,l2⊥l3,
    ∴l1∥l3,∠APC=∠BQC=∠ACB=90°,
    ∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,
    ∴∠PAC=∠BCQ,
    在△ACP和△CBQ中,

    ∴△ACP≌△CBQ(AAS),
    ∴AP=CQ,PC=BQ,
    ∴PC+CQ=AP+BQ=PQ=,
    ∵AP∥BQ,
    ∴∠OAP=∠OBH,
    ∵点O是斜边AB的中点,
    ∴AO=BO,
    在△APO和△BHO中,

    ∴△APO≌△BHO(AAS),
    ∴AP=BH,OP=OH,
    ∴BH+BQ=AP+BQ=PQ,
    ∴PQ=QH=,
    ∵∠PQH=90°,
    ∴PH=PQ=12,
    ∵OP=OH,∠PQH=90°,
    ∴OQ=PH=6.
    故答案为:6
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键.
    4、72°
    【分析】
    根据题意求得正多边形的边数,进而求得答案
    【详解】
    解:∵一个正多边形的内角和为540°,即


    故答案为:
    【点睛】
    本题考查了正多边形的内角和和外角和公式,根据内角和公式求得边数是解题的关键.
    5、
    【分析】
    根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.
    【详解】
    解:连接BE,连接AE交FG于O,如图,

    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    ∵E点为CD的中点,
    ∴CE=DE=1,BE⊥CD,
    在Rt△BCE中,BE=CE=,
    ∵AB∥CD,
    ∴BE⊥AB,
    ∴.
    ∴,
    设AF=x,
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    ∴FE=FA=x,
    ∴BF=2-x,
    在Rt△BEF中,(2-x)2+()2=x2,
    解得:,
    在Rt△AOF中,,
    ∴.
    故答案为: .
    【点睛】
    本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    三、解答题
    1、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
    【分析】
    (1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
    【详解】
    解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=45°,
    ∴∠ABM+∠CBN=45°,
    ∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
    即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (2)MN=AM+CN;理由如下:
    如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    ∵∠A+∠C=180°,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=∠ABC,
    ∴∠ABM+∠CBN=∠ABC=∠MBN,
    ∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (3)MN=CN-AM,理由如下:
    如图,在NC上截取C M'=AM,连接B M',

    ∵在四边形ABCD中,∠ABC+∠ADC=180°,
    ∴∠C+∠BAD=180°,
    ∵∠BAM+∠BAD=180°,
    ∴∠BAM=∠C,
    ∵AB=BC,
    ∴△ABM≌△CB M',
    ∴AM=C M',BM=B M',∠ABM=∠CB M',
    ∴∠MA M'=∠ABC,
    ∵∠MBN=∠ABC,
    ∴∠MBN=∠MA M'=∠M'BN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N=CN-C M',
    ∴MN=CN-AM.
    故答案是:MN=CN-AM.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
    2、(1)见解析(2)见解析
    【分析】
    (1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
    (2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
    【详解】
    (1)答案如下图所示:


    分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
    (2)证明:点是AB与其垂直平分线l的交点,
    点是AB的中点,
    是Rt△ABC上的斜边的中线,

    DE、DF分别是ADC,∠BDC的角平分线,
    ,,





    在四边形CEDF中,,
    四边形CEDF是矩形.
    【点睛】
    本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
    3、(1)证明见解析;(2)
    【分析】
    (1)先证明再证明从而可得结论;
    (2)证明是等边三角形,再分别求解 从而可得答案.
    【详解】
    证明(1) 平行四边形ABCD中,,

    点E、F分别是BC、AD的中点,


    (2) ,



    是等边三角形,


    四边形是平行四边形,


    所以等于的2倍的角有:
    【点睛】
    本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.
    4、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.
    【分析】
    (1)根据网格可直接用割补法求解三角形的面积;
    (2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;
    (3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.
    【详解】
    解:(1)△ABC的面积为:,
    故答案为:;
    (2)①作图如下(答案不唯一):

    ②的面积为:,
    故答案为:8;
    (3)在网格中作出,,

    在与中,

    ∴,
    ∴,

    六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积

    故答案为:31.
    【点睛】
    本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.
    5、见解析
    【分析】
    根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.
    【详解】
    证明:∵四边形ABCD是菱形,
    ∴AD=DC,AB=BC,∠A=∠C.
    ∵DE⊥AB,DF⊥BC,
    ∴∠AED=∠CFD=90°.
    ∴△AED≌△CFD(AAS).
    ∴AE=CF.
    ∴AB﹣AE=BC﹣CF.
    即:BE=BF.
    【点睛】
    本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.

    相关试卷

    北京课改版第十五章 四边形综合与测试习题:

    这是一份北京课改版第十五章 四边形综合与测试习题,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学第十五章 四边形综合与测试巩固练习:

    这是一份初中数学第十五章 四边形综合与测试巩固练习,共25页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map