搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十五章四边形同步训练试题(无超纲)

    2022年必考点解析京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第1页
    2022年必考点解析京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第2页
    2022年必考点解析京改版八年级数学下册第十五章四边形同步训练试题(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试课后作业题

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试课后作业题,共21页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,∠ACB=90°,AB=10,CDAB边上的中线,则CD的长是(    A.20 B.10 C.5 D.22、如图,矩形ABCD的对角线ACBD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )A.16 B.12 C.8 D.43、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.4、已知中,CD是斜边AB上的中线,则的度数是(    A. B. C. D.5、下列图形中,可以看作是中心对称图形的是(     A. B. C. D.6、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了(    )米.A.80 B.100 C.120 D.1407、下列图形中,是中心对称图形的是(  )A. B.C. D.8、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或29、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B. C. D.10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为(    A.46.5cm B.22.5cm C.23.25cm D.以上都不对第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.2、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DAF,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.3、点DE分别是△ABCABAC的中点,已知BC=12,则DE=_____4、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.5、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,将▱ABCD的边AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:△BEF≌△CDF(2)连接BDCE,若∠BFD=2∠A,求证四边形BECD是矩形.2、在中,,斜边,过点,以AB为边作菱形ABEF,若,求的面积.3、如图,四边形ABCD是平行四边形,延长DABC,使得AECF,连接BEDF(1)求证:△ABE≌△CDF(2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE     °时,四边形BFDE是菱形.4、如图,在四边形ABCD中,∠ABC=∠ADC=90°,EAC的中点,连接BDEDEB.求证:∠1=∠2.5、如图,在中,ADAB,∠ABC的平分线交AD于点FEFABBC于点E(1)求证:四边形ABEF是菱形;(2)若AB=5,AE=6,的面积为36,求DF的长. -参考答案-一、单选题1、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.【详解】解:∵在中,AB=10,CDAB边上的中线故选:C.【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.2、C【分析】由题意可得AOBOCODO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,AC=2AO=2COBD=2BO=2DOACBD=16,OAOB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,ABAOBO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.3、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4、B【分析】由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.【详解】解:∵∠ACB=90°,∠B=54°,
    ∴∠A=36°,
    CD是斜边AB上的中线,
    CD=AD
    ∴∠ACD=∠A=36°.
    故选:B.【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.5、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形.故本选项正确.故选:A.【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.6、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.7、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.8、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.9、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【分析】如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,则,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,∴△DEF的周长同理可得:△GHI的周长∴第三次作中位线得到的三角形周长为∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.2、【分析】,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.3、6【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵DE分别是△ABCABAC的中点,DE是△ABC的中位线,BC=12,DE=BC=6,故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5、【分析】由正方形的对称性可知,PBPD,当BPE共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中BD关于AC对称,PBPDPD+PEPB+PEBE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,BE=3PD+PE最小值是3故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得ABCDAB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明【详解】(1)∵四边形ABCD为平行四边形,ABCDAB=CD.BE=AB,BECDBE=CD.∴∠BEF=∠FDC,∠FBE=∠FCD,∴△BEF≌△CDF.(2)∵BECDBE=CD.∴四边形BECD为平行四边形, DF=DE,CF=BC, ∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,∴∠FDC=∠FCD,FD=FC.DF=DE,CF=BC,BC=DE,∴▱BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.2、4【分析】分别过点ECEHCG垂直AB,垂足为点HG,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过垂足为点 四边形ABEF为菱形,中,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.3、(1)见解析;(2)12【分析】(1)由“SAS”可证△ABE≌△CDF
    (2)通过证明BE=DE,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,
    AB=CD,∠BAD=∠BCD
    ∴∠1=∠DCF
    在△ABE和△CDF中,
    ∴△ABE≌△CDFSAS);
    (2)当∠ABE=10°时,四边形BFDE是菱形,
    理由如下:∵△ABE≌△CDF
    BE=DFAE=CF∵四边形ABCD是平行四边形,
    AD=BC
    AD+AE=BC+CF
    BF=DE
    ∴四边形BFDE是平行四边形,
    ∵∠1=32°,∠ADB=22°,
    ∴∠ABD=∠1-∠ADB=10°,
    ∵∠ABE=12°,
    ∴∠DBE=22°,
    ∴∠DBE=∠ADB=22°,
    BE=DE
    ∴平行四边形BFDE是菱形,
    故答案为:12.【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.4、见解析【分析】根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质即可证明.【详解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵点EAC的中点,EBACEDACEBED∴∠1=∠2.【点睛】本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质,解决本题的关键是掌握直角三角形斜边上的中线等于斜边的一半.5、(1)见解析;(2)2.5.【分析】(1)根据平行四边形的性质和角平分线的性质说明∠ABF=∠AFB、可得AB=AF,同理可得AB=AF,再由AFBE可得四边形ABEF是菱形;(2)过AAHBE垂足为E,根据菱形的性质可得AO=EOBO=FOAF=EF=AB=5,AEBF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的和差即可解答.【详解】(1)证明:四边形ABCD是平行四边形,AD//BC,即AF//BE∴∠FBE=∠AFB∵∠ABC的平分线交AD于点F∴∠ABF=∠EBF∴∠ABF=∠AFBAB=AF又∵AB//EFAF//BE∴四边形ABEF是平行四边形,AB=AF∴四边形ABEF是菱形;(2)如图:过AAHBE垂足为H∵四边形ABCD是菱形,AO=EOBO=FOAF=AB=5,AEBFAE=6,AO=3,BO= BF=8,S菱形ABEF=AE·BF=×8×6=24,BE·AH=24,AH=;S平行四边形ABCD=BC·AH=36,BC=∵平行四边形ABCDAD=BC=FD=AD-AF=-5=2.5.【点睛】本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键. 

    相关试卷

    北京课改版第十五章 四边形综合与测试习题:

    这是一份北京课改版第十五章 四边形综合与测试习题,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共30页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map