![2021-2022学年度京改版八年级数学下册第十五章四边形必考点解析试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12704709/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形必考点解析试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12704709/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形必考点解析试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12704709/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版八年级下册第十五章 四边形综合与测试课后复习题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后复习题,共29页。试卷主要包含了如图,M,以下分别是回收等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
3、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )
A. B. C.4.5 D.4.3
4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
5、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
6、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
7、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )
A.75° B.60° C.55° D.40°
8、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.14或15或16 B.15或16或17 C.15或16 D.16或17
9、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
10、下列各APP标识的图案是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.
2、正五边形的一个内角与一个外角的比______.
3、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.
4、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.
5、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、阅读材料,回答下列问题:
(材料提出)
“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.
(探索研究)
探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ;
探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ;
探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 .
(模型应用)
应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示)
应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示)
(拓展延伸)
拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P)
拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 .
2、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.
(1)当为何值时,四边形为平行四边形?
(2)设四边形的面积为,求与之间的函数关系式.
(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
3、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.
4、阅读探究
小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,
(1)图1中的面积为________.
实践应用
参考小明解决问题的方法,回答下列问题:
(2)图2是一个的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为,,的格点.
②的面积为________(写出计算过程).
拓展延伸
(3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).
5、(1)先化简,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;
(2)如图,菱形ABCD中,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.证明:四边形AECF是矩形.
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项符合题意;
D.是轴对称图形,也是中心对称图形,故此选项不合题意.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
2、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
3、A
【分析】
根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
【详解】
解:∵四边形ABCD为正方形,
∴∠B=∠DCF=90°,BC=DC,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(SAS),
∴∠BCE=∠CDF,
∵∠BCE+∠DCH=90°,
∴∠CDF+∠DCH=90°,
∴∠DHC=∠DHE=90°,
∵点G为DE的中点,
∴GH=DE,
∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
∴,
∴GH=.
故选A.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
4、A
【分析】
多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
【详解】
解:多边形的外角和是360度,
又多边形的外角和是内角和的2倍,
多边形的内角和是180度,
这个多边形是三角形.
故选:A.
【点睛】
考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
5、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
6、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
7、C
【分析】
证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
【详解】
解:∵点E,F分别是AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠AEF=∠B=55°,
故选:C.
【点睛】
本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
8、A
【分析】
由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
【详解】
解:设新多边形的边数为n,
则(n-2)•180°=2340°,
解得:n=15,
①若截去一个角后边数增加1,则原多边形边数为14,
②若截去一个角后边数不变,则原多边形边数为15,
③若截去一个角后边数减少1,则原多边形边数为16,
所以多边形的边数可以为14,15或16.
故选:A.
【点睛】
本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
9、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
10、C
【分析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题
1、
【分析】
先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.
【详解】
:如图所示,在矩形ABCD中,∠AOB=60°,,
∵四边形ABCD是矩形,
∴∠ABC=90°,,
∴△ABC是等边三角形,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.
2、
【分析】
根据公式分别求出一个内角与一个外角的度数,即可得到答案.
【详解】
解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,
∴正五边形的一个内角与一个外角的比为,
故答案为:.
【点睛】
此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.
3、
【分析】
利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.
【详解】
解:在中,,
在中,,
由折叠性质可知: ,
四边形的内角和为,
,
,,
,
,,且∠1=85°,
,
故答案为:.
【点睛】
本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.
4、10
【分析】
如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.
【详解】
解:如图,由题意得:四边形为矩形,
是等边三角形,
故答案为:
【点睛】
本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.
5、16
【分析】
由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.
【详解】
∵四边形ABCD是菱形,且对角线相交于点O
∴点O是AC的中点
∵E为DC的中点
∴OE为△CAD的中位线
∴AD=2OE=2×2=4
∴菱形的周长为:4×4=16
故答案为:16
【点睛】
本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.
三、解答题
1、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
【分析】
探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;
探索三:运用探索一和探索二的结论即可求得答案;
应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;
应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;
拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;
拓展二:运用探索一的结论及角平分线定义即可求得答案.
【详解】
解:探索一:如图1,
∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,
∴∠A+∠B=∠C+∠D,
故答案为∠A+∠B=∠C+∠D;
探索二:如图2,
∵AP、CP分别平分∠BAD、∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,
∴∠B﹣∠P=∠P﹣∠D,
即2∠P=∠B+∠D,
∵∠B=36°,∠D=14°,
∴∠P=25°,
故答案为25°;
探索三:由①∠D+2∠1=∠B+2∠3,
由②2∠B+2∠3=2∠P+2∠1,
①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
∠D+2∠B=2∠P+∠B.
∴∠P=.
故答案为:∠P=.
应用一:如图4,
延长BM、CN,交于点A,
∵∠M=α,∠N=β,α+β>180°,
∴∠AMN=180°﹣α,∠ANM=180°﹣β,
∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;
∵BP、CP分别平分∠ABC、∠ACB,
∴∠PBC=∠ABC,∠PCD=∠ACD,
∵∠PCD=∠P+∠PBC,
∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,
故答案为:α+β﹣180°,;
应用二:如图5,
延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,
∵∠M=α,∠N=β,α+β<180°,
∴∠A=180°﹣α﹣β,
∵BP平分∠MBC,CP平分∠NCR,
∴BP平分∠ABT,CP平分∠ACB,
由应用一得:∠P=∠A=,
故答案为:;
拓展一:如图6,
由探索一可得:
∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,
∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,
∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,
∠PAB=∠CAB,∠PDB=∠CDB,
∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,
∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,
∴∠P=,
故答案为:∠P=;
拓展二:如图7,
∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,
∴∠PAD=∠BAD,∠PCD=90°+∠BCD,
由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,
②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,
③﹣①,得:2∠P﹣∠B=∠D+180°,
∴2∠P﹣∠B﹣∠D=180°,
故答案为:2∠P﹣∠B﹣∠D=180°.
【点睛】
本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.
2、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
【分析】
(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
【详解】
解:(1)∵在平行四边形中,,,
由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;
(2)过点A作AE⊥BC于E,如图,
在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,
当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;
(4)①当AB=BP时,BP=8,
即2t=8,t=4;
②当AP=BP时,如图,
∵∠B=30°,
过P作PM垂直于AB,垂足为点M,
∴BM=4,,
解得:BP=,
∴2t=,
∴t=
③当AB=AP时,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,当t=4或 或时,△ABP为等腰三角形.
【点睛】
此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
3、见解析
【分析】
根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠A=∠C,
∵BE=BF,
∴AB-BE=BC-BF,即AE=CF,
∴△ADE≌△CDF(SAS),
∴DE=DF,
∴∠DEF=∠DFE.
【点睛】
本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.
4、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.
【分析】
(1)根据网格可直接用割补法求解三角形的面积;
(2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;
(3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.
【详解】
解:(1)△ABC的面积为:,
故答案为:;
(2)①作图如下(答案不唯一):
②的面积为:,
故答案为:8;
(3)在网格中作出,,
在与中,
,
∴,
∴,
,
六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积
,
故答案为:31.
【点睛】
本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.
5、(1),0;(2)证明见解析.
【分析】
(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;
(2)首先根据菱形的性质得到,,然后根据E、F分别是BC、AD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.
【详解】
(1)(a+b)(a﹣b)﹣a(a﹣2b)
将a=1,b=2代入得:原式=;
(2)如图所示,
∵四边形ABCD是菱形,
∴,且,
又∵E、F分别是BC、AD的中点,
∴,
∴四边形AECF是平行四边形,
∵AB=AC,E是BC的中点,
∴,即,
∴平行四边形AECF是矩形.
【点睛】
此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共29页。试卷主要包含了下列说法中,正确的是,下列说法中,不正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)