初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A.B.C.D.
2、下列说法中,不正确的是( )
A.四个角都相等的四边形是矩形
B.对角线互相平分且平分每一组对角的四边形是菱形
C.正方形的对角线所在的直线是它的对称轴
D.一组对边相等,另一组对边平行的四边形是平行四边形
3、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A.B.
C.D.
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )
A.任意四边形B.平行四边形C.对角线相等的四边形D.对角线垂直的四边形
6、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为( )
A.6B.6.5C.10D.13
7、下列图案中,是中心对称图形,但不是轴对称图形的是( )
A.B.
C.D.
8、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A.B.C.D.
9、下列命题是真命题的是( )
A.五边形的内角和是720°B.三角形的任意两边之和大于第三边
C.内错角相等D.对角线互相垂直的四边形是菱形
10、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.
2、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____
3、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.
4、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
5、如图,的度数为_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:在中,点、点、点分别是、、的中点,连接、.
(1)如图1,若,求证:四边形为菱形;
(2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
2、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.
(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a= ,b= ,= ;
(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , .
3、如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.
(1)求证:;
(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角.
4、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF.
(1)求证:AD=CE.
(2)若CD=5,AC=6,求△AEB的面积.
5、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,
(1)几秒后PQ平行于y轴?
(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.
-参考答案-
一、单选题
1、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
2、D
【分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
【详解】
解:A、四个角都相等的四边形是矩形,说法正确;
B、正方形的对角线所在的直线是它的对称轴,说法正确;
C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
D、一组对边相等且平行的四边形是平行四边形,原说法错误;
故选:D.
【点睛】
本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
3、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
4、D
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.
【详解】
解:,
,
,
,
∴a=b,c=d,
∵四边形四条边长分别是a,b,c,d,其中a,b为对边,
∴c、d是对边,
∴该四边形是平行四边形,
故选:B.
【点睛】
此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.
6、B
【分析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵直角三角形两直角边长为5和12,
∴斜边=,
∴此直角三角形斜边上的中线的长==6.5.
故选:B.
【点睛】
本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
7、C
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
8、C
【分析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
【详解】
解:∵点P是∠AOB平分线上的一点,,
∴,
∵PD⊥OA,M是OP的中点,
∴,
∴
∵点C是OB上一个动点
∴当时,PC的值最小,
∵OP平分∠AOB,PD⊥OA,
∴最小值,
故选C.
【点睛】
本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
9、B
【分析】
利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
【详解】
解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
10、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
二、填空题
1、9
【分析】
设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.
【详解】
设正多边形的外角为x度,则内角为(5x−60)度
由题意得:
解得:
则正多边形的边数为:360÷40=9
即这个正多边形的边数为9
故答案为:9
【点睛】
本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.
2、6
【分析】
根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.
【详解】
解:由题意得:
(n-2)×180°=360°×2,
解得:n=6;
故答案为6.
【点睛】
本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.
3、(9,4)、(-3,4)、(3,-4)
【分析】
根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.
【详解】
∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),
∴AD=BO=6,AD∥BO,
∴D的横坐标是3+6=9,纵坐标是4,
即D的坐标是(9,4),
同理可得出D的坐标还有(-3,4)、(3,-4).
故答案为:(9,4)、(-3,4)、(3,-4).
【点睛】
本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.
4、
【分析】
连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
【详解】
解:如图所示,连接OB,交AC于点D,
∵四边形OABC为平行四边形,,
∴四边形OABC为菱形,
∴,,,
∵,
∴为等边三角形,
∴,
∴,
在中,设,则,
∴,
即,
解得:或(舍去),
∴的长为:,
故答案为:.
【点睛】
题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
5、
【分析】
根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.
【详解】
解:如图,
∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:.
【点睛】
本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
三、解答题
1、(1)证明见详解;(2)与面积相等的平行四边形有、、、.
【分析】
(1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;
(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.
【详解】
解:(1)∵D、E、F分别是AB、AC、BC的中点,
∴,,,,
∴四边形DECF为平行四边形,
∵,
,
∴四边形DECF为菱形;
(2)∵D、E、F分别是AB、AC、BC的中点,
∴,,,,, ,
且,,,
∴四边形DEFB、DECF、ADFE是平行四边形,
∴,
∵,,
∴四边形EGCF是平行四边形,
∴,
∴,
∴
∴与面积相等的平行四边形有、、、.
【点睛】
题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.
2、(1),2,;(2)4或5.
【分析】
(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;
(2)根据要求周长边长为的菱形即可.
【详解】
解:(1)由题意得:a=,b=2,
∴;
故答案为:,2,;
(2)如图1,2中,菱形ABCD即为所求.
菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
故答案为:4或5.
【点睛】
本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.
3、(1)证明见解析;(2)
【分析】
(1)先证明再证明从而可得结论;
(2)证明是等边三角形,再分别求解 从而可得答案.
【详解】
证明(1) 平行四边形ABCD中,,
点E、F分别是BC、AD的中点,
(2) ,
是等边三角形,
四边形是平行四边形,
而
,
所以等于的2倍的角有:
【点睛】
本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.
4、(1)见解析;(2)39
【分析】
(1)首先根据CF⊥DE,DF=EF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CD=CE,然后根据直角三角形斜边上的中线等于斜边的一半得到CD=AD,即可证明AD=CE;
(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.
【详解】
(1)证明:∵DF=EF
∴点F为DE的中点
又∵CF⊥DE
∴CF为DE的中垂线
∴CD=CE
又∵在Rt△ABC中,∠ACB=90°,
CD是斜边AB上的中线
∴CD==AD
∴AD=CE
(2)解:由(1)得CD=CE==5
∴AB=10
∴在Rt△ABC中,BC==8
∴EB=EC+BC=13
∴ .
【点睛】
此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.
5、(1)3秒后平行于轴;(2)或.
【分析】
(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;
(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.
【详解】
解:(1),
,
设秒后平行于轴,
,
垂直于轴,垂直于轴,平行于轴,
四边形是矩形,
,即,
解得,
即3秒后平行于轴;
(2)由题意得:经过秒后,,
垂直于轴,点在直线上,且点的坐标为,
点的纵坐标为4,
①当点在点右侧时,,
由得:,
解得,
,
此时点的坐标为;
②当点在点左侧时,,
由得:,
解得,
,
此时点的坐标为;
综上,点的坐标为或.
【点睛】
本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.
相关试卷
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共29页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
这是一份2021学年第十五章 四边形综合与测试练习,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。