搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十五章四边形专项攻克试卷(含答案详解)

    2022年必考点解析京改版八年级数学下册第十五章四边形专项攻克试卷(含答案详解)第1页
    2022年必考点解析京改版八年级数学下册第十五章四边形专项攻克试卷(含答案详解)第2页
    2022年必考点解析京改版八年级数学下册第十五章四边形专项攻克试卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试一课一练

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为(  )

    A.40° B.45° C.50° D.55°
    2、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )

    A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD
    C.AD=AE D.AE=CE
    3、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是(  )
    A.菱形 B.矩形 C.正方形 D.三角形
    4、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为(  )

    A.(,1) B.(1,1) C.(1,) D.(+1,1)
    5、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    6、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )

    A.1 B. C. D.2
    7、下列图形中,是中心对称图形的是( )
    A. B. C. D.
    8、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5 B.4 C.3 D.2
    9、下列图形中,是中心对称图形的是(  )
    A. B.
    C. D.
    10、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的内角和为1080°,则它是______边形.
    2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.
    3、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )

    4、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.
    5、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、(1)如图,在中,,,,求的度数.
    (2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数.

    2、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;

    (拓展应用)
    (2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
    ①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
    ②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
    3、在四边形ABCD中,∠A=100°,∠D=140°.
    (1)如图①,若∠B=∠C,则∠B=   度;
    (2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.

    4、如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,
    (1)如图1,求证:CD=BE
    (2)如图2,过点A作AF⊥BE,写出AF,BD,CD之间的数量关系并说明理由.

    5、(3)点P为AC上一动点,则PE+PF最小值为.

    -参考答案-
    一、单选题
    1、A
    【分析】
    可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
    【详解】
    解:设∠EAD′=α,∠FAB′=β,
    根据折叠性质可知:
    ∠DAF=∠D′AF,∠BAE=∠B′AE,
    ∵∠B′AD′=10°,
    ∴∠DAF=10°+β,
    ∠BAE=10°+α,

    ∵四边形ABCD是矩形
    ∴∠DAB=90°,
    ∴10°+β+β+10°+10°+α+α=90°,
    ∴α+β=30°,
    ∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
    =10°+α+β,
    =10°+30°,
    =40°.
    则∠EAF的度数为40°.
    故选:A.
    【点睛】
    本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
    2、D
    【分析】
    根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.
    【详解】
    解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
    ∴∠BAC=∠CAB′,
    ∵AB∥CD,
    ∴∠BAC=∠ACD,
    ∴∠ACD=∠CAB′,
    ∴AE=CE,
    ∴结论正确的是D选项.
    故选D.
    【点睛】
    本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.
    3、B
    【分析】
    先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
    【详解】
    解:如图,∵、、、分别是、、、的中点,
    ∴,,,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    ∴平行四边形是矩形,
    又与不一定相等,
    与不一定相等,
    矩形不一定是正方形,
    故选:B.

    【点睛】
    本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
    4、B
    【分析】
    作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
    【详解】
    :作CD⊥x轴于点D,

    则∠CDO=90°,
    ∵四边形OABC是菱形,OA=,
    ∴OC=OA=,
    又∵∠AOC=45°,
    ∴∠OCD=90°-∠AOC=90°-45°=45°,
    ∴∠DOC=∠OCD,
    ∴CD=OD,
    在Rt△OCD中,OC=,CD2+OD2=OC2,
    ∴2OD2=OC2=2,
    ∴OD2=1,
    ∴OD=CD=1(负值舍去),
    则点C的坐标为(1,1),
    故选:B.
    【点睛】
    此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
    5、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、是轴对称图形,不是中心对称图形,不符合题意;
    C、既是轴对称图形,又是中心对称图形,符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、B
    【分析】
    作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
    【详解】
    解:如图,在线段AD上截取AM,使AM=AE,

    ∵AD=AB,
    ∴DM=BE,
    ∵点A关于直线DE的对称点为F,
    ∴△ADE≌△FDE,
    ∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
    ∴∠DFG=90°,
    在Rt△DFG和Rt△DCG中,
    ∵,
    ∴Rt△DFG≌Rt△DCG(HL),
    ∴∠3=∠4,
    ∵∠ADC=90°,
    ∴∠1+∠2+∠3+∠4=90°,
    ∴2∠2+2∠3=90°,
    ∴∠2+∠3=45°,
    即∠EDG=45°,
    ∵EH⊥DE,
    ∴∠DEH=90°,△DEH是等腰直角三角形,
    ∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
    ∴∠1=∠BEH,
    在△DME和△EBH中,
    ∵,
    ∴△DME≌△EBH(SAS),
    ∴EM=BH,
    Rt△AEM中,∠A=90°,AM=AE,
    ∴,
    ∴ ,即=.
    故选:B.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
    7、B
    【分析】
    根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    【详解】
    选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
    选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
    故选:.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    9、A
    【分析】
    把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
    【详解】
    解:选项A中的图形是中心对称图形,故A符合题意;
    选项B中的图形不是中心对称图形,故B不符合题意;
    选项C中的图形不是中心对称图形,故C不符合题意;
    选项D中的图形不是中心对称图形,故D不符合题意;
    故选A
    【点睛】
    本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
    10、B
    【分析】
    利用中心对称图形的定义判断即可.
    【详解】
    解:根据中心对称图形的定义可知,②满足条件.
    故选:.
    【点睛】
    本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
    二、填空题
    1、八
    【分析】
    根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).
    【详解】
    解:设该多边形的边数为n,
    根据题意,得,
    解得,
    ∴这个多边形为八边形,
    故答案为:八.
    【点睛】
    此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
    2、5
    【分析】
    直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.
    【详解】
    解:在直角三角形中,两直角边长分别为6和8,
    则斜边长==10,
    ∴斜边中线长为×10=5,
    故答案为 5.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.
    3、2
    【分析】
    当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.
    【详解】
    解:当AP=AB时,
    ∵四边形ABCD为正方形,
    ∴AB=AD,
    ∴AP=AD.
    ∵ 将△ADE沿DE对折, 得到△PDE,
    ∴AD=DP,
    ∴AP=AD=DP,
    ∴△APD为等边三角形,
    ∴∠ADP=60°,
    ∴∠ADE=30°,
    ∴,
    ∴设,则,
    ∴在中,,即,
    ∴解得:;
    当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,

    ∵AD⊥AB,
    ∴四边形AFPG为矩形,
    ∴PG=AF.
    ∵AP=PB,PF⊥AB,
    ∴AF=AB=.
    ∵AB=AD=DP,
    ∴PG=AF=PD=,
    如图,作DP的中点M,连接GM,



    又∵

    ∴是等边三角形


    ∴∠GDP=30°.
    ∵∠DAE=∠DPE=90°,∠ADP=30°,
    ∴∠AEP=150°,
    ∴∠PEF=30°.
    设PF=x,则PE=AE=2x,EF=x,
    ∴AE+EF=(2+)x= ,
    ∴x=2-3,
    ∴AE=4-6.
    故答案为:2或4-6.
    【点睛】
    此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.
    4、
    【分析】
    设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.
    【详解】
    解:设这个正多边形有条边,则


    解得:
    所以从一个正八边形的一个顶点出发可以引条对角线,
    故答案为:
    【点睛】
    本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为 从边形的一个顶点出发可以引条对角线”是解本题的关键.
    5、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    三、解答题
    1、(1);(2)每一个外角的度数是
    【分析】
    (1)根据平行线的性质可得∠B的度数,再根据等腰三角形的性质可得∠A的度数;
    (2)根据n边形的内角和等于外角和的3倍多180°,可得方程180(n-2)=360×3+180,再解方程即可.
    【详解】
    解:(1)∵,




    设这个多边形的边数为,根据题意得:

    解得,
    即它的边数是,
    所以每一个外角的度数是.
    【点睛】
    本题考查了平行线的性质、等腰三角形的性质以及多边形内角和与外角和.解题的关键是掌握多边形内角和公式,明确外角和是360°.
    2、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
    【分析】
    (1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
    (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
    【详解】
    (1)证明:∵∠ACD是△ABC的外角
    ∴∠ACD=∠A+∠ABC
    ∵CE平分∠ACD

    又∵∠ECD=∠E+∠EBC

    ∵BE平分∠ABC


    ∴;
    (2)①∵∠ACD=130°,∠BCD=50°
    ∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
    ∵∠CBA=40°
    ∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
    ∵AD平分∠BAC

    ∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
    ②∠CAD+41°=∠CBD
    设∠CBD=α
    ∵∠ABD+∠CBD=180°
    ∴∠ABC=180°﹣2α
    ∵∠ACB=82°
    ∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
    ∵AD平分∠BAC
    ∴∠CAD=∠CAB=α﹣41°
    ∴∠CAD+41°=∠CBD.
    【点睛】
    本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
    3、(1)60;(2)40°.
    【分析】
    (1)根据四边形内角和为360°解决问题;
    (2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;
    【详解】
    (1)∵∠A=100°,∠D=140°,
    ∴∠B=∠C==60°,
    故答案为60;
    (2)∵CE//AD,
    ∠DCE+∠D=180°,
    ∴∠DCE=40°,
    ∵CE平分∠BCD,
    ∴∠BCD=80°,
    ∴∠B=360°﹣(100°+140°+80°)=40°.
    【点睛】
    本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.
    4、(1)证明见解析;(2)BD= CD+2AF,理由见解析
    【分析】
    (1)延长BA与CD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则;
    (2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.
    【详解】
    解:(1)如图所示,延长BA与CD的延长线交于点G,
    ∵∠BAC=90°,
    ∴∠CAG=90°,
    ∵CD⊥BE,
    ∴∠EDC=∠GDB=∠BAE=90°,
    又∵∠AEB=∠DEC,
    ∴∠ABE=∠DCE,
    在△ABE和△ACG中,

    ∴△ABE≌△ACG(ASA),
    ∴BE=CG,
    ∵BD是∠ABC的角平分线,
    ∴∠GBD=∠CBD,
    在△BDG和△BDC中,

    ∴△BDG≌△BDC(ASA),
    ∴CD=GD,
    ∴;

    (2)BD= CD+2AF,理由如下:
    如图所示,连接AD,取BE中点H,连接AH,
    由(1)得CD=GD,,
    ∵△BAE和△CAG都是直角三角形,H为BE中点,D为CG中点,
    ∴,,
    ∴,
    ∴∠ABH=∠BAH,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=45°,
    又∵BD平分∠ABC,
    ∴∠ABH=∠BAH=22.5°,
    ∴∠AHF=∠ABH+∠BAH=45°,
    ∵AF⊥DH,
    ∴HF=DF,∠AFH=90°,
    ∴∠HAF=45°,
    ∴AF=HF,
    ∴DH=2AF,
    ∴BD=BH+HD=BH+2AF=CD+2AF.

    【点睛】
    .本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    5、见解析
    【分析】
    (1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;
    (2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;
    (3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.
    【详解】
    (1)解:△ACF是等腰三角形,理由如下:
    如图,

    由折叠可知,∠1=∠2,
    ∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠2=∠3,
    ∴∠1=∠3,
    ∴AF=CF,
    ∴△ACF是等腰三角形;
    (2)∵四边形ABCD是矩形且AB=8,BC=4,
    ∴AD=BC=4,CD=AB=8,∠D=90°,
    设FD=x,则AF=CF=8-x,
    在Rt△AFD中,根据勾股定理得AD2+DF2=AF2,
    ∴42+x2=(8-x)2,
    解得x=3 ,即DF=3,
    ∴CF=8-3=5,
    ∴;
    (3)如图,连接PB,

    根据折叠得:CE=CB,∠ECP=∠BCP,
    ∵CP=CP,
    ∴△ECP≌△BCP,
    ∴PE=PB,
    ∴PE+PF=PE+PB,
    ∴当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,
    由(2)知:CF=5,
    ∵BC=4,∠BCF=90°,
    ∴ ,
    即PE+PF最小值为 .
    【点睛】
    本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共23页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共25页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map