


初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时练习
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共24页。试卷主要包含了下列命题为真命题的是,已知一次函数y=ax+b等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A.小于12件 B.等于12件 C.大于12件 D.不低于12件2、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )A. B. C. D.无法确定3、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)4、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )A. B.C. D.5、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限6、下列关于变量x,y的关系,其中y不是x的函数的是( )A. B.C. D.7、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x8、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )A.﹣1 B.0 C.1 D.29、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )A. B. C. D.10、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是( )A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数y=ax+b(a,b是常数,a≠0)中,x与y的部分对应值如表,x01234y6420 那么关于x的方程ax+b=0的解是________.2、一次函数的图象经过第一、三、四象限,则k的取值范围是______________.3、已知一次函数的图象经过点和,则_______(填“>”“<”或“=”)4、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.5、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).三、解答题(5小题,每小题10分,共计50分)1、已知是x的正比例函数,且当时,y=2.(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4;2、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费 元,②方式收费 元;(2)②收费方式中y与x之间的函数关系式是 ;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是 (填①或②).3、阅读下列一段文字,然后回答问题.已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.4、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数?5、如图,在平面直角坐标系中,点O为坐标原点,点A在y轴上,点B,C在x轴上,,,.(1)求线段AC的长;(2)点P从C点出发沿射线CA以每秒2个单位长度的速度运动,过点A作,点F在y轴的左侧,,过点F作轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;(3)在(2)的条件下,直线BP交y轴于点K,,当时,求t的值,并求出点P的坐标. -参考答案-一、单选题1、C【解析】【分析】根据图象找出在的上方即收入大于成本时,x的取值范围即可.【详解】解:根据函数图象可知,当时,,即产品的销售收入大于销售成本,该公司盈利.故选:C.【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键.2、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组的解为.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.3、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.4、D【解析】【分析】若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.【详解】解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).5、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.7、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.8、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.【详解】解:把点(0,1)和(1,3)代入y=ax+b,得:,解得,∴b﹣a=1﹣2=﹣1.故选:A.【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.9、D【解析】【分析】根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.【详解】解:由题意及图像可知:,,y=﹣bx+k中的,,由一次函数图像与参数的关系可知:D选项符合条件,故选:D.【点睛】本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.10、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.二、填空题1、x=2【解析】【分析】方法一:先取两点利用待定系数法求出一次函数解析式,再求方程的解即可;方法二:直接根据图表信息即可得出答案;【详解】解:方法一:取(0,4),(1,2)分别代入y=ax+b,得b=4,a+b=2,解得a=-2,b=4,此时方程-2x+4=0的解为x=2.方法二:根据图表可得:当x=2时,y=0,因而方程ax+b=0的解是x=2.故答案为:x=2.【点睛】本题考查了一次函数,准确利用图表信息、熟练掌握一次函数的相关知识是解题关键.2、##【解析】【分析】根据题意,得k>0,2k-3<0,求解即可.【详解】∵一次函数的图象经过第一、三、四象限,∴k>0,2k-3<0,∴k的取值范围是,故答案为:.【点睛】本题考查了一次函数图像分布与k,b的关系,根据图像分布,列出不等式,准确求解即可.3、>【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小,判断即可.【详解】∵一次函数的图象经过点和,且k<0,∴k<0,∵-2<3,∴>,故答案为:>.【点睛】本题考查了一次函数的基本性质,灵活运用性质是解题的关键.4、-3【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值.【详解】解:在y轴上,∴m+3=0,解得m=-3.故答案为:-3.【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.5、 一条直线 上 下【解析】【分析】根据一次函数的性质填写即可.【详解】解:∵函数为一次函数,∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).故答案为:①一条直线 ②上 ③下.【点睛】本题考查了一次函数的性质,做题的关键是牢记性质准确填写.三、解答题1、(1)y=+1;(2)x=时,y=4.【解析】【分析】(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;(2)根据的值代入(1),即可求得的值【详解】解:(1)是x的正比例函数,当时,y=2解得表达式为:即(2)由,令即解得 x=时,y=4.【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键.2、(1)80,100;(2)y2=0.2x;(3)②【解析】【分析】(1)根据题意由函数图象就可以得出①②收费;(2)根据题意设②中y与x的关系式为y2=k2x,由待定系数法求出k2值即可;(3)根据题意设①中y与x的关系式为y1=k1x+b,再讨论当y1>y2,y1=y2,y1<y2时求出x的取值就可以得出结论.【详解】解:(1)由函数图象,得:①方式收费80元,②方式收费100元,故答案为:80,100;(2)设②中y与x的关系式为y2=k2x,由题意,得100=500k2,∴k=0.2,∴函数解析式为:y2=0.2x;(3)设①中y与x的关系式为y1=k1x+b,由函数图象,得:,解得:,∴y1=0.1x+30,当y1>y2时,0.1x+30>0.2x,解得:x<300,当y1=y2时,0.1x+30=0.2x,解得:x=300,当y1<y2时,0.1x+30<0.2x,x>300,∵200<300,∴方式②省钱.故答案为:②.【点睛】本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.3、(1)5;(2)能,理由见解析;(3),【解析】【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.【详解】(1)∵A、B两点在平行于y轴的直线上∴AB=即A、B两点间的距离为5(2)能判定△DEF的形状由两点间距离公式得:,,∵DE=DF∴△DEF是等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小由对称性知:点G的坐标为,且PG=PF∴PD+PF=PD+PG≥DG即PD+PF的最小值为线段DG的长设直线DG的解析式为,把D、G的坐标分别代入得:解得:即直线DG的解析式为上式中令y=0,即,解得即点P的坐标为由两点间距离得:DG=所以PD+PF的最小值为 【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.4、-3【解析】【分析】根据正比例函数定义即可求解.【详解】解:∵y=(m-3)x+(m2-9)是正比例函数,∴m2-9=0且m-3≠0,∴m=.【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k≠0)的函数叫正比例函数”是解题关键 .5、(1)8,(2)见解析,(3)(,)或(,);【解析】【分析】(1)根据30°角所对直角边等于斜边一半,求出OA长,即可求AC长;(2)作PG⊥OA于G,证△AFE≌△PAG,得出,用含t的式子表示AG的长即可;(3)作PN⊥OB于N,证Rt△BOK≌Rt△AOC,得出,求出AP的长即可求t的值,求出NP、ON的长即可求坐标.【详解】解:(1)∵,,∴,∵,,∴;(2)作PG⊥OA于G,当点P在线段CA上时,CP=2t,AP=8-2t,∵,∴,∴,∴,∵,∴△AFE≌△PAG,∴,∵,∴,∴,∴;当点P在线段CA延长线上时,CP=2t,AP=2t -8,同理可得△AFE≌△PAG,(3)作PN⊥OB于N,如图,∵,,,∴Rt△BOK≌Rt△AOC,∴, ,∵,∴, ∴,此时,点P在线段CA延长线上,∴,;∵,∴,∵PN⊥OB,∵,∴,∴,∴,∵,∴,点P的坐标为(,)如图,同理可知Rt△BOK≌Rt△AOC,,∵,∴,∴,∴,∴,∴,∴,,,同理可得,,,,点P的坐标为(,);综上,点P的坐标为(,)或(,);【点睛】本题考查了全等三角形的判定与性质,含30°角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共19页。试卷主要包含了点在等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共29页。试卷主要包含了已知点,已知一次函数y=等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共24页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
