初中北京课改版第十四章 一次函数综合与测试课时作业
展开
这是一份初中北京课改版第十四章 一次函数综合与测试课时作业,共19页。试卷主要包含了已知点P,点P的坐标为,已知一次函数与一次函数中,函数,函数的图象如下图所示,,两地相距80km,甲,若点在第三象限,则点在.等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①3、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号4、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)5、点P的坐标为(﹣3,2),则点P位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:表1:x…01……34… 表2:x…01……543… 则关于x的不等式的解集是( )A. B. C. D.7、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )A., B.,C., D.,8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km9、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限10、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数(、是常数,)的图像与轴交于点,与轴交于点.若,则的取值范围为______.2、已知函数,如果函数值,那么相应的自变量的取值范围是_______.3、对于直线y=kx+b(k≠0):(1)当k>0,b>0时,直线经过第______象限;(2)当k>0,b<0时,直线经过第______象限;(3)当k<0,b>0时,直线经过第______象限;(4)当k<0,b<0时,直线经过第______象限.4、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.5、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)三、解答题(5小题,每小题10分,共计50分)1、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.2、一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值(在弹性限度内):x(g)012345…y(cm)182022242628…(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?(3)砝码质量每增加1g,弹簧的长度增加________cm.3、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元. (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?4、我们知道,海拔高度每上升1千米,温度下降6 ℃.某时刻,连云港地面温度为20 ℃,设高出地面x千米处的温度为y ℃.(1)写出y与x之间的函数关系式.(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?5、在正比例函数y=(k-3)x|k-3|中,函数值y随x的增大而减小,求k的值. -参考答案-一、单选题1、C【解析】【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.2、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.3、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.4、B【解析】【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,∴m+3=-2+3=1,∴点P的坐标为(1,0).故选:B.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.5、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.6、D【解析】【分析】用待定系数法求出和的表达式,再解不等式即可得出答案.【详解】由表得:,在一次函数上,∴,解得:,∴,,在一次函数上,∴,解得:,∴,∴为,解得:.故选:D.【点睛】本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.7、B【解析】【分析】由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.【详解】解:由图象可知,当x>0时,y<0,∵,∴ax<0,a<0;x=b时,函数值不存在,即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,∴b>0.故选:B.【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.8、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、; ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答9、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.故选:D.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题1、【解析】【分析】将已知点、代入后可得,再根据的取值范围可得的取值范围.【详解】解:∵一次函数(、是常数,)的图像与轴交于点,与轴交于点,∴,∴,∵,∴,即.故答案为:.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得和的关系是解题关键.2、x>4【解析】【分析】根据题意,先求出当时,自变量的值,然后根据一次函数的增减性求解即可.【详解】解:当时,,解得,∵一次函数解析式为,,∴y随x增大而增大,∴当时,,故答案为:.【点睛】本题考查了一次函数的增减性和求自变量的值,熟知一次函数增减性是解题的关键.3、 一、二、三 一、三、四 一、二、四 二、三、四【解析】【分析】当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.【详解】(1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.4、##【解析】【分析】根据题意,可设 ,将时,,代入即可求解.【详解】解:根据题意,可设 ,∵当时,,∴ ,解得: ,∴y与x之间的函数关系式为 .故答案为:【点睛】本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.5、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.三、解答题1、(1)6,30°;(2)见解析,30【解析】【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.2、 (1)弹簧长度与所挂砝码质量;所挂砝码质量是自变量,弹簧长度是所挂砝码质量的函数;(2) 18cm; 24cm; (3) 2cm【解析】【分析】(1)表中的数据主要涉及到所挂物体的质量和弹簧的长度,可知反映变量的关系;悬挂砝码的质量发生变化引起弹簧长度的变化,故可知自变量;知函数关系;(2)弹簧原长即未悬挂砝码时的长度,看表可知;悬挂砝码质量为g时弹簧的长度,看表可知;(3)由表中的数据可知,时,;时,等数据,据此判断砝码质量每增加g,弹簧增加的长度.【详解】解:(1)表中反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是所挂砝码质量的函数.(2)弹簧的原长是cm;悬挂砝码质量为g时,弹簧的长度是cm.(3),,;,;,;,;据此判断砝码质量每增加g,弹簧增加的长度为cm.【点睛】本题考查了一次函数.解题的关键与难点在于找到函数关系.3、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: ,解得: ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得: .解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.4、(1);(2)℃;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案.【详解】(1)根据题意,得:;(2)结合(1)的结论,得山顶的温度大约是:℃;(3)结合(1)的结论,得:∴∴飞机离地面的高度为9千米.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.5、2【解析】【分析】根据正比例函数得出|k-3|=1,解得解得k1=4, k2=2,函数值y随x的增大而减小,可得k-3<0,根据不等式解集取舍即可.【详解】解:根据题意,可得|k-3|=1且k-3<0,∴k-3=1或k-3=-1,解得k1=4, k2=2,∵k-3<0,∴k<3,∴k=2.【点睛】本题考查正比例函数定义以及自变量函数性质,掌握正比例函数定义以及自变量函数性质是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习,共27页。试卷主要包含了若点在第三象限,则点在.,一次函数的一般形式是,已知点A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
这是一份数学第十四章 一次函数综合与测试课后练习题,共24页。试卷主要包含了在平面直角坐标系中,点P,下面哪个点不在函数的图像上.等内容,欢迎下载使用。