初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题
展开京改版八年级数学下册第十四章一次函数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
2、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
4、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )
A.4个 B.3个 C.2个 D.1个
5、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )
A.y=x B.y=x C.y=2x D.y=-2x
7、关于函数有下列结论,其中正确的是( )
A.图象经过点
B.若、在图象上,则
C.当时,
D.图象向上平移1个单位长度得解析式为
8、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
9、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y<0 B.y>0 C.y<3 D.y>3
10、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,y随x增大而增大.
2、如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是 _____.
3、关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.
4、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;
5、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:A、B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,点C的坐标是(0,2).
(1)直接写出点B的坐标.
(2)求直线BC的函数表达式.
2、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:
(1)当通讯时间为500分钟时,①方式收费 元,
②方式收费 元;
(2)②收费方式中y与x之间的函数关系式是 ;
(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是 (填①或②).
3、某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠.乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇.
(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;
(2)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?
4、在正比例函数y=(k-3)x|k-3|中,函数值y随x的增大而减小,求k的值.
5、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.
(1)求这两个函数的表达式;
(2)求两直线与y轴围成的三角形的面积.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
【详解】
解:由题意可知BO=CO,
∵又AB=AC,
∴AO⊥BC,
∴点A在y轴上,
∴选项A符合题意,
B选项三点共线,不能构成三角形,不符合题意;
选项C、D都不在y轴上,不符合题意;
故选:A.
【点睛】
本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
2、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
4、A
【解析】
【分析】
由图象所给信息对结论判断即可.
【详解】
由图象可知当x=0时,甲、乙两人在A、B两地还未出发
故A,B之间的距离为1200m
故①正确
前12min为甲、乙的速度和行走了1200m
故
由图象可知乙用了24-4=20min走完了1200m
则
则
故②正确
又∵两人相遇时停留了4min
∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地
则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米
则b=800
故③正确
从24min开始为甲独自行走1200-800=400m
则t=min
故a=24+10=34
故④正确
综上所述①②③④均正确,共有四个结论正确.
故选:A.
【点睛】
本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.
5、C
【解析】
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
6、D
【解析】
【分析】
把点(-1,2)代入正比例函数y=mx即可求解.
【详解】
解:∵正比例函数y=mx的图象经过点(-1,2),
∴-m=2,
∴m=-2,
∴这个函数解析式为y=-2x.
故选:D
【点睛】
本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.
7、D
【解析】
【分析】
根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
【详解】
解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
故选D.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
8、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
9、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
10、D
【解析】
【分析】
根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.
【详解】
解:由题意及图像可知:,,
y=﹣bx+k中的,,
由一次函数图像与参数的关系可知:D选项符合条件,
故选:D.
【点睛】
本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.
二、填空题
1、(答案不唯一)
【解析】
【分析】
根据一次函数的性质,即可求解.
【详解】
解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)
如 等.
故答案为: (答案不唯一)
【点睛】
本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.
2、
【解析】
【分析】
根据正比例函数的性质列不等式求解即可.
【详解】
解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,
∴k﹣2<0,
解得,k<2.
故填:k<2.
【点睛】
本题主要考查了正比例函数的性质、正比例函数的图象等知识点,根据正比例函数图象所在的象限列出不等式是解答本题的关键.
3、m>-2
【解析】
【分析】
先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵正比例函数中,y随x的增大而增大,
∴>0,
解得.
故答案为;.
【点睛】
本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.
4、V=100h
【解析】
【分析】
根据体积公式:体积=底面积×高进行填空即可.
【详解】
解:V与h的关系为V=100h;
故答案为:V=100h.
【点睛】
本题主要考查了列函数关系式,题目比较简单.
5、y=48x+20(x>2)##y=20+48x(x>2)
【解析】
【分析】
根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.
【详解】
解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,
∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:
y=(60x-100)×0.8+100=48x+20(x>2),
故答案为:y=48x+20(x>2).
【点睛】
本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.
三、解答题
1、(1)B(7,0)或(﹣1,0);(2)或
【解析】
【分析】
(1)根据的坐标和,分在点的左边和右边两种情况求得的坐标;
(2)根据待定系数法求得即可.
【详解】
解:(1),都是轴上的点,点的坐标是,且线段的长等于4,
或;
(2)设直线的解析式为,
直线经过,
直线的解析式为,
当时,,解得,
当时,,解得,
直线的函数表达式为或.
【点睛】
本题考查了待定系数法求一次函数的解析式,解题的关键是根据题意求得的两个坐标.
2、(1)80,100;(2)y2=0.2x;(3)②
【解析】
【分析】
(1)根据题意由函数图象就可以得出①②收费;
(2)根据题意设②中y与x的关系式为y2=k2x,由待定系数法求出k2值即可;
(3)根据题意设①中y与x的关系式为y1=k1x+b,再讨论当y1>y2,y1=y2,y1<y2时求出x的取值就可以得出结论.
【详解】
解:(1)由函数图象,得:
①方式收费80元,②方式收费100元,
故答案为:80,100;
(2)设②中y与x的关系式为y2=k2x,由题意,得
100=500k2,
∴k=0.2,
∴函数解析式为:y2=0.2x;
(3)设①中y与x的关系式为y1=k1x+b,由函数图象,得:
,
解得:,
∴y1=0.1x+30,
当y1>y2时,0.1x+30>0.2x,
解得:x<300,
当y1=y2时,0.1x+30=0.2x,
解得:x=300,
当y1<y2时,0.1x+30<0.2x,
x>300,
∵200<300,
∴方式②省钱.
故答案为:②.
【点睛】
本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.
3、(1)见解析;(2)组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多
【解析】
【分析】
(1)根据甲旅行社的收费方案写出甲的函数关系;根据乙旅行社的收费方案,分x≤3和x>3两种情况写出函数关系式即可;
(2)把x=20分别代入函数关系式计算,然后判断即可;根据所需费用一样列出方程,然后求解即可.
【详解】
解:(1)甲旅行社:y=300x,
乙旅行社:x≤3时,y=350x,
x>3时,y=350(x-3)=350x-1050;
(2)当x=20时,
甲:y=300×20=6000元,
乙:y=350×20-1050=5950元;
所以组织20人的旅行团时,选乙家旅行社比较合算;
300x=350x-1050,
解得x=21,
答:组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多.
【点睛】
本题考查了一次函数的应用,读懂题目信息,理解两家旅行社的收费方法是解题的关键.
4、2
【解析】
【分析】
根据正比例函数得出|k-3|=1,解得解得k1=4, k2=2,函数值y随x的增大而减小,可得k-3<0,根据不等式解集取舍即可.
【详解】
解:根据题意,可得|k-3|=1且k-3<0,
∴k-3=1或k-3=-1,
解得k1=4, k2=2,
∵k-3<0,
∴k<3,
∴k=2.
【点睛】
本题考查正比例函数定义以及自变量函数性质,掌握正比例函数定义以及自变量函数性质是解题关键.
5、(1),;(2)
【解析】
【分析】
(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;
(2)由点A的坐标及OB的长度即可求得△AOB的面积.
【详解】
∵A(4,3)
∴OA=OB==5,
∴B(0,-5),
设直线OA的解析式为y=kx,则4k=3,k=,
∴直线OA的解析式为,
设直线AB的解析式为,把A、B两点的坐标分别代入得:,
∴,
∴直线AB的解析式为y=2x-5.
(2).
【点睛】
本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.
北京课改版八年级下册第十四章 一次函数综合与测试课堂检测: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共30页。试卷主要包含了已知点P,已知点,已知点A,点P在第二象限内,P点到x等内容,欢迎下载使用。
数学北京课改版第十四章 一次函数综合与测试课后复习题: 这是一份数学北京课改版第十四章 一次函数综合与测试课后复习题,共29页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了函数的图象如下图所示,一次函数y=mx﹣n,已知点等内容,欢迎下载使用。