初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共26页。试卷主要包含了正比例函数y=kx的图象经过一等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于函数有下列结论,其中正确的是( )A.图象经过点B.若、在图象上,则C.当时,D.图象向上平移1个单位长度得解析式为2、下列函数中,y随x的增大而减小的函数是( )A. B.y=6﹣2x C. D.y=﹣6+2x3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y24、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )A.y=x B.y=x C.y=2x D.y=-2x5、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向6、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)7、正比例函数y=kx的图象经过一、三象限,则一次函数y=﹣kx+k的图象大致是( )A. B.C. D.8、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.9、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.10、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )A. B. C. D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果 ,y=2,那么x = ______2、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.4、在平面直角坐标系中,点A(1,4),B(4,2),C(m,﹣m).当以点A、B、C为顶点构成的△ABC周长最小时,m的值为______.5、图象经过点A(-2,6)的正比例函数y=kx,则k为 _________ .三、解答题(5小题,每小题10分,共计50分)1、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.2、已知直线和直线相交于点A,且分别与x轴相交于点B和点C.(1)求点A的坐标;(2)求的面积.3、已知一次函数.(1)画出函数图象.(2)不等式>0的解集是_______;不等式<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、如图,在平面直角坐标系xoy中,的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,且,,点C是直线OC上一点,且在第一象限,,满足关系式.(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当时,直线l恰好过点C.①求直线OC的函数表达式;②当时,请直接写出点P的坐标;③当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.5、一次函数的图像过,两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x 时,y>0;当x 时,y<0;当时,y的取值范围是 . -参考答案-一、单选题1、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.【详解】解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.2、B【解析】【分析】根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.【详解】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选:B.【点睛】本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.3、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.4、D【解析】【分析】把点(-1,2)代入正比例函数y=mx即可求解.【详解】解:∵正比例函数y=mx的图象经过点(-1,2),∴-m=2,∴m=-2,∴这个函数解析式为y=-2x.故选:D【点睛】本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.5、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.6、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.7、A【解析】【分析】由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.【详解】解:∵正比例函数y=kx的图象经过一、三象限∴∴∴一次函数的图象经过一、二、四象限故选:A【点睛】本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.8、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.9、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.10、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组的解为.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.二、填空题1、3【解析】【分析】把y=2代入 y=x计算即可.【详解】解:∵y=2,∴2=x,∴x=3故答案为:3.【点睛】本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解.2、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.【详解】解:∵直线y=ax﹣1与直线y=2x+1平行,∴ a=2,∴直线y=ax﹣1的解析式为y=2x﹣1∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;故答案为:二.【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.3、y=48x+20(x>2)##y=20+48x(x>2)【解析】【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:y=(60x-100)×0.8+100=48x+20(x>2),故答案为:y=48x+20(x>2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.4、【解析】【分析】作B点关于直线y=﹣x的对称点B',连接AB',则有BC=B'C,所以△ABC周长最小值为AB+AB'的长,求出直线直线AB'的解析式为y=x+,联立方程组,可求C点坐标.【详解】解:∵C(m,﹣m),∴点C在直线y=﹣x上,作B点关于直线y=﹣x的对称点B',连接AB',∵BC=B'C,∴BC+AC=B'C+AC≥AB',∴△ABC周长=AB+BC+AC=AB+B'C+AC≥AB+AB',∴△ABC周长最小值为AB+AB'的长, ∵B(4,2),∴B'(﹣2,﹣4),∵A(1,4),设直线AB'的解析式为y=kx+b,∴,∴,y=x+,联立方程组,解得,∴C(﹣,),∴m=﹣,故答案为:﹣.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键.5、-3【解析】【分析】把点A(-2,6)代入正比例函数的关系式为y=kx,即可求出答案.【详解】解:将点A(-2,6)代入正比例函数的关系式为y=kx则有6=-2k解得:k=-3,故答案为:-3.【点睛】本题考查了正比例函数的解析式的问题,做题的关键是直接将点的坐标代入解析式,计算即可.三、解答题1、(1)6,30°;(2)见解析,30【解析】【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.2、(1);(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点的坐标;(2)分别令,即可求得点的坐标,进而求得【详解】解:(1)由题意得 解得, ∴A(1,3). (2)过A作AD⊥x轴于点D.∵y=x+2与x轴交点B(-2,0), y=-x+4与x轴交点C(4,0).∴BC=6. ∵A(1,3),∴AD=3. ∴S△ABC=【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.3、(1)见解析;(2)x<-3;x>-3;(3)BC=.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)(3,3);(2)①直线OC的函数表达式为;②点P坐标为(,0)或(,0);③t的值为,或【解析】【分析】(1)过A作AD⊥x轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;(2)①由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;②先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;③先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.【详解】(1)过A作AD⊥x轴于点D,∵OB=6,OA=AB,∠OAB=90°,∴AD平分∠OAB,且OD=BD=3,∴∠OAD=∠AOD=45°,∴OD=DA=3,∴A坐标为(3,3),故答案为:(3,3);(2)①∵,且,∴OC=,当时,点P坐标为(6,0),∵直线l恰好过点C,,,,点C坐标为(6,2),设直线OC的函数表达式为y=kx,把(6,2)代入,得:6k=2,解得,故直线OC的函数表达式为;②设直线OC与直线AB交于点H,直线AB的解析式为,∴,∴,∴直线AB的解析式为,∵点P的横坐标为t,点R在直线上,∴点P(t,0),Q(t,t)或(t,),R(t,),∵线段QR的长度为m,∴或当时,或 解得:或或 故点P坐标为(,0)或(,0)或(,0);③∵直线AB的解析式为,联立,解得,∴点H的坐标为(,),∴,,,∵,∴,过点A作AM⊥直线l,AN⊥直线OC,如图:或则:AM=,∵直线RQ与直线OC所组成的角被射线RA平分,AM=AN,即=,解得或,故t的值为或.【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.5、(1);(2)见解析;(3);;【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过A,B两点的直线解析式为y=kx+b,把,两点坐标代入,得 解得, ∴直线的解析式为;(2)当x=0时,y=4,当y=0时,x=2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:当时,;当时,;当时, 故答案为:;;【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.
相关试卷
这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共23页。试卷主要包含了已知点A,已知点,,两地相距80km,甲等内容,欢迎下载使用。
这是一份2020-2021学年第十四章 一次函数综合与测试课时练习,共27页。试卷主要包含了已知点,一次函数的一般形式是等内容,欢迎下载使用。