初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式由左边到右边的变形中,是因式分解的为( )A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x2、下列各式从左到右的变形中,是因式分解的为( )A.a(x+y)=ax+ay B.6x3y2=2x2y•3xyC.t2﹣16+3t=(t+4)(t﹣4)+3t D.y2﹣6y+9=(y﹣3)23、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )A.2 B.3 C.4 D.54、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)5、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.6、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数7、下列因式分解正确的是( )A. B.C. D.8、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)9、已知,,那么的值为( )A.3 B.6 C. D.10、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_______.2、填空:x2-2x+__________=(x-__________)2.3、当x=___时,x2﹣2x+1取得最小值.4、因式分解:=___________.5、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.三、解答题(5小题,每小题10分,共计50分)1、因式分解:ab4﹣4ab3+4ab2.2、(1)20032-1999×2001(公式法) (2)16(a-b)2-9(a+b)2 (分解因式)3、请将下列各式因式分解.(1)3a(x﹣y)﹣5b(y﹣x); (2)x2(a﹣b)2﹣y2(b﹣a)2.(3)2xmyn﹣1﹣4xm﹣1yn(m,n均为大于1的整数).4、因式分解:(1)(2)(3)5、分解因式:(1) (2) ---------参考答案-----------一、单选题1、B【解析】【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.【详解】解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.故选B.【点睛】本题考查因式分解,掌握因式分解的定义是解题关键.2、D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A.a(x+y)=ax+ay是整式的计算,故错误;B.6x3y2=2x2y•3xy,不是因式分解,故错误;C.t2﹣16+3t=(t+4)(t﹣4)+3t,含有加法,故错误;D.y2﹣6y+9=(y﹣3)2是因式分解,正确;故选:D.【点睛】本题考查了因式分解的意义,注意:把一个多项式转化成几个整式积的形式叫做因式分解.3、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.4、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.5、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.6、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.7、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.9、D【解析】【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.10、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、x(x+2y)(x-2y)【解析】【分析】先提取公因式,再用平方差公式进行分解即可.【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.2、 1 1【解析】【分析】根据配方法填空即可,加上一次项系数一半的平方.【详解】故答案为:1,1【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.3、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.4、【解析】【分析】先提公因式,再利用完全平方公式分解即可.【详解】解:==故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.5、【解析】【分析】利用十字相乘法分解因式即可.【详解】解:,故答案为:.【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.三、解答题1、【解析】【分析】先提取公因式,再利用公式法分解即可;【详解】原式;【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确运用公式是解题的关键.2、(1)12010;(2)(7a-b)(a-7b)【解析】【分析】(1)运用完全平方公式和平方差公式进行计算即可;(2)直接运用平方差公式进行计算即可.【详解】解:(1)20032-1999×2001=(2000+3)2-(2000-1)(2000+1) =20002+2×2000×3+9-(20002-12) =20002+2×2000×3+9-20002+12 =12010 (2)16(a-b)2-9(a+b)2= = = =【点睛】本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键.3、(1)(x﹣y)(3a+5b);(2)(a﹣b)2(x -y)(x +y);(3).【解析】【分析】(1)首先将3a(x﹣y)﹣5b(y﹣x)变形为3a(x﹣y)+5b(x﹣y),然后利用提公因式法分解因式即可;(2)首先将x2(a﹣b)2﹣y2(b﹣a)2变形为x2(a﹣b)2﹣y2(a﹣b)2,然后利用提公因式法分解因式即可;(3)利用提公因式法分解因式即可求解;【详解】解:(1)3a(x﹣y)﹣5b(y﹣x)=3a(x﹣y)+5b(x﹣y)=(x﹣y)(3a+5b)(2)x2(a﹣b)2﹣y2(b﹣a)2=x2(a﹣b)2﹣y2(a﹣b)2=(a﹣b)2(x2﹣y2)=(a﹣b)2(x -y)(x +y)(3)2xmyn﹣1﹣4xm﹣1yn=【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、(1);(2);(3)【解析】【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可.【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、(1);(2)【解析】【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1);(2)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习题,共15页。试卷主要包含了能利用进行因式分解的是等内容,欢迎下载使用。
这是一份数学第八章 因式分解综合与测试课后测评,共17页。试卷主要包含了下列因式分解正确的是.,下列因式分解中,正确的是,多项式与的公因式是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了已知x,y满足,则的值为,下列各式从左至右是因式分解的是等内容,欢迎下载使用。