北京课改版七年级下册第八章 因式分解综合与测试复习练习题
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列多项式,下列多项式因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
2、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )
A.2 B.3 C.4 D.5
3、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
4、下列各式能用完全平方公式进行因式分解的是( )
A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9
5、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )
A.2个 B.3个 C.4个 D.5个
6、下列多项式中能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.x2+(﹣y)2
C.(﹣x)2+(﹣y)2 D.﹣m2+1
7、下列由左到右的变形,属于因式分解的是( )
A. B.
C. D.
8、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
9、下列多项式因式分解正确的是( )
A. B.
C. D.
10、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,那么x+y=___.
2、因式分解:=___________.
3、因式分解:______.
4、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)
5、因式分解:2a2-4a-6=________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解
(1); (2).
2、因式分解:① ②
3、(1)计算:2·+;
(2)因式分解:3+12+12x.
4、已知,.求值:(1);(2).
5、因式分解:(x2+9)2﹣36x2.
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
2、C
【解析】
【分析】
根据十字相乘法进行因式分解的方法,对选项逐个判断即可.
【详解】
解:A、,不能用十字相乘法进行因式分解,不符合题意;
B、,不能用十字相乘法进行因式分解,不符合题意;
C、,能用十字相乘法进行因式分解,符合题意;
D、,不能用十字相乘法进行因式分解,不符合题意;
故选C
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.
3、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
4、A
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
【详解】
A. 9x2-6x+1 ,故该选项正确,符合题意;
B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
故选A
【点睛】
此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
5、B
【解析】
【分析】
平方差公式:,根据平方差公式逐一分析可得答案.
【详解】
解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;
x2-y2能用平方差公式分解因式,故(2)符合题意;
-m2+n2能用平方差公式分解因式,故(3)符合题意;
-b2-a2不能用平方差公式分解因式,故(4)不符合题意;
-a6+4能用平方差公式分解因式,故(5)符合题意;
所以能用平方差公式分解的因式有3个,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.
6、D
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
D、,可以利用平方差公式进行分解,符合题意;
故选:D.
【点睛】
本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.
7、A
【解析】
【分析】
直接利用因式分解的定义分别分析得出答案.
【详解】
解:、,是因式分解,符合题意.
、,是整式的乘法运算,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
故选:A.
【点睛】
本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.
8、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
9、D
【解析】
【分析】
根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.
【详解】
解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;
B. ,因式分解不彻底,故选项B不正确;
C. 因式中出现分式,故选项C不正确;
D. 根据完全平方公式因式分解,故选项D正确.
故选择D.
【点睛】
本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.
10、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
二、填空题
1、3
【解析】
【分析】
先把原式化为:再利用非负数的性质求解,再求解代数式的值即可.
【详解】
解: ,
解得:
故答案为:3
【点睛】
本题考查的是非负数的性质,因式分解的应用,掌握“利用完全平方公式分解因式”是解题的关键.
2、
【解析】
【分析】
先提公因式,再利用完全平方公式分解即可.
【详解】
解:
=
=
故答案为:
【点睛】
本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.
3、
【解析】
【分析】
先将原式变形为,再利用提公因式法分解即可.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.
4、2x
【解析】
【分析】
可根据完全平方公式或提公因数法分解因式求解即可.
【详解】
解:∵,
∴○可以为2x、-2x、2x-1等,答案不唯一,
故答案为:2x.
【点睛】
本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.
5、2(a-3)(a+1)## 2(a+1)(a-3)
【解析】
【分析】
提取公因式2,再用十字相乘法分解因式即可.
【详解】
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点睛】
本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
三、解答题
1、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式分解因式即可;
(2)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.
2、①;②
【解析】
【分析】
(1)原式先提取公因式,再运用平方差公式进行因式分解即可;
(2)原式先提取公因式,再运用平方差公式进行因式分解即可.
【详解】
解:①
=
=
②
=
=
=
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
3、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;
(2)由可得:由,可得再把分解因式即可得到答案.
【详解】
解:(1) ,,
则
(2)
,
【点睛】
本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
5、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了下列多项式中有因式x﹣1的是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试精练,共15页。试卷主要包含了下列因式分解正确的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。