还剩12页未读,
继续阅读
七年级下册第八章 因式分解综合与测试课时训练
展开这是一份七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了下列各式从左至右是因式分解的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中,不能用公式法因式分解的是( )
A.B.C.D.
2、计算的值是( )
A.B.C.D.2
3、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A.B.C.D.
4、一元二次方程x2-3x=0的根是( )
A.x=0B.x=3C.x1=0,x2=3D.x1=0,x2=-3
5、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
6、下列各式从左至右是因式分解的是( )
A.B.
C.D.
7、下列多项式不能用公式法因式分解的是( )
A.B.C.D.
8、下列各式中,不能用平方差公式分解因式的是( )
A.B.C.D.
9、下列等式中,从左到右的变形是因式分解的是( )
A.a(a-3)=a2-3aB.(a+3)2=a2+6a+9
C.6a2+1=a2(6+)D.a2-9=(a+3)(a-3)
10、下列因式分解正确的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,,则代数式的值为______.
2、分解因式________.
3、若关于的二次三项式因式分解为,则的值为________.
4、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)
5、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1)
(2)
2、因式分解:(x2+9)2﹣36x2.
3、分解因式
(1)
(2)
4、因式分解:
(1)3a²c-6abc+3b²c
(2)x²(m-2n)+y²(2n-m)
(3)
(4)(x﹣1)(x﹣3)+1
5、分解因式:2a2-8ab+8b2.
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
2、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
3、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
4、C
【解析】
【分析】
利用提公因式法解一元二次方程.
【详解】
解: x2-3x=0
或
故选:C.
【点睛】
本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.
5、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
6、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
7、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
8、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
9、D
【解析】
【分析】
根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.
【详解】
解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;
B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;
C、6a2+1=a2(6+)不是因式分解,不符合题意;
D、a2-9=(a+3)(a3)属于因式分解,符合题意;
故选:D
【点睛】
本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.
10、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
二、填空题
1、12
【解析】
【分析】
把因式分解,再代入已知的式子即可求解.
【详解】
∵,,
∴
∴===3×4=12
故答案为:12.
【点睛】
此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.
2、
【解析】
【分析】
原式提取m后,利用完全平方公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.
3、1
【解析】
【分析】
把括号打开,求出的值,计算即可.
【详解】
解:∵,
∴,
,
故答案为:1.
【点睛】
本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.
4、2x
【解析】
【分析】
可根据完全平方公式或提公因数法分解因式求解即可.
【详解】
解:∵,
∴○可以为2x、-2x、2x-1等,答案不唯一,
故答案为:2x.
【点睛】
本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.
5、2或-2##-2或2
【解析】
【分析】
先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.
【详解】
解:∵a2b2+a2+b2+1=4ab,
∴a2b2-2ab+1+a2-2ab+b2=0,
∴(ab-1)2+(a-b)2=0,
又∵(ab-1)2≥0,(a-b)2≥0,
∴ab-1=0,a-b=0,
∴ab=1,a=b,
∴a2=1,
∴a=±1,
∴a=b=1或a=b=-1,
当a=b=1时,a+b=2;
当a=b=-1时,a+b=-2,
故答案为:2或-2.
【点睛】
此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.
三、解答题
1、(1)(2)
【解析】
【分析】
(1)先提出9,再根据平方差公式因式分解即可;
(2)先根据整式的乘法计算,再根据完全平方公式因式分解
【详解】
(1)
(2)
【点睛】
本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.
2、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
3、(1)4xy(y+1)2;(2)-5(a-b)2
【解析】
【分析】
(1)提公因式后利用完全平方公式分解即可;
(2)提公因式后利用完全平方公式分解即可.
【详解】
(1),
,
=4xy(y+1)2;
(2),
,
=-5(a-b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.
4、(1);(2);(3);(4)
【解析】
【分析】
(1)原式提取公因式3c,再利用完全平方公式分解即可;
(2)原式提取公因式,再利用平方差公式分解即可;
(3)原式提取公因式2,再利用完全平方公式分解即可;
(4)先计算多项式乘多项式,再利用公式法因式分解即可.
【详解】
(1)
(2)
.
(3)==
(4)===.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
5、2(a-2b)2
【解析】
【分析】
先提取公因式2,再利用完全平方公式因式分解.
【详解】
解:2a2-8ab+8b2
=2(a2-4ab+4b2)
=2(a-2b)2.
【点睛】
本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
相关试卷
初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题:
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了当n为自然数时,,已知x,y满足,则的值为,能利用进行因式分解的是等内容,欢迎下载使用。
数学七年级下册第八章 因式分解综合与测试当堂检测题:
这是一份数学七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了若x2+ax+9=,下列多项式,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习:
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共17页。试卷主要包含了下列分解因式结果正确的是等内容,欢迎下载使用。