![考点解析:京改版七年级数学下册第八章因式分解专项测试试题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12693000/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点解析:京改版七年级数学下册第八章因式分解专项测试试题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12693000/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点解析:京改版七年级数学下册第八章因式分解专项测试试题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12693000/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第八章 因式分解综合与测试同步测试题
展开京改版七年级数学下册第八章因式分解专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把分解因式的结果是( ).
A. B.
C. D.
2、下列多项式不能用公式法因式分解的是( )
A. B. C. D.
3、下列由左到右的变形,是因式分解的是( )
A. B.
C. D.
4、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
5、下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
6、下列因式分解正确的是( )
A. B.
C. D.
7、下列因式分解中,正确的是( )
A. B.
C. D.
8、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
9、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
10、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式_______.
2、因式分解:2a2﹣4ab+2b2=_____.
3、已知,,则代数式的值为______.
4、分解因式:________.
5、分解因式:________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解
(1)ax2+8ax+16a;
(2)x4-81x2y2
2、把下列各式因式分解:
(1)
(2)
3、因式分解:
(1)18x-2y
(2)a3 b+2a2 b2+ab3 .
4、分解因式:.
5、分解因式:
(1)
(2)
(3)
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
2、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
3、A
【解析】
【分析】
根据因式分解的定义,对各选项作出判断,即可得出正确答案.
【详解】
解:A、,是因式分解,故此选项符合题意;
B、,原式分解错误,故本选项不符合题意;
C、右边不是整式的积的形式,故本选项不符合题意;
D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
4、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
5、B
【解析】
【分析】
根据因式分解的定义直接判断即可.
【详解】
解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B.等式从左到右的变形属于因式分解,故本选项符合题意;
C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;
D.属于整式乘法,不属于因式分解,故本选项不符合题意;
故答案为:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
8、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
9、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
10、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.
二、填空题
1、
【解析】
【分析】
把原式化为,再利用完全平方公式分解因式即可.
【详解】
解:
故答案为:
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.
2、
【解析】
【分析】
先提取公因式2,再利用完全平方公式计算可得.
【详解】
解:原式=.
故答案为:
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
3、12
【解析】
【分析】
把因式分解,再代入已知的式子即可求解.
【详解】
∵,,
∴
∴===3×4=12
故答案为:12.
【点睛】
此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.
4、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
5、
【解析】
【分析】
原式提取公因式,再利用平方差公式分解即可.
【详解】
解:原式=,
=
故答案为:.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题
1、(1)a(x+4)2 ;(2)x2(x+9y)(x-9y)
【解析】
【分析】
(1)先提取公因式 再利用完全平方公式分解因式即可;
(2)先提取公因式 再利用平方差公式分解即可.
【详解】
解:(1)原式=a(x2+8x+16)
=a(x+4)2
(2)原式=x2(x2-81y2) =x2(x+9y)(x-9y)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.
2、(1);(2)
【解析】
【分析】
(1)先提取公因式 再按照完全平方公式分解因式即可;
(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.
3、(1)2(3x+y)(3x-y);(2)ab(a+b)2
【解析】
【分析】
(1)先提取公因式“2”,然后利用平方差公式分解因式即可;
(2)先提取公因式“”,然后利用完全平方公式分解因式即可;
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.
4、.
【解析】
【分析】
综合利用提公因式法和完全平方公式进行因式分解即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
5、(1);(2);(3)
【解析】
【分析】
(1)先提取公因式再利用公式法法因式分解即可;
(2)先提取公因式再利用公式法因式分解即可;
(3)先提取公因式再利用公式法因式分解即可;
【详解】
解:(1)
原式=
=
(2)
原式=
=
(3)
原式=
=
【点睛】
本题考查了因式分解,利用适当的方法进行因式分解是解题的关键.
数学七年级下册第八章 因式分解综合与测试课时训练: 这是一份数学七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列各式的因式分解中正确的是,下列因式分解正确的是,已知x,y满足,则的值为等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试课时训练: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。
2020-2021学年第八章 因式分解综合与测试课后测评: 这是一份2020-2021学年第八章 因式分解综合与测试课后测评,共15页。试卷主要包含了下列变形,属因式分解的是,已知x,y满足,则的值为等内容,欢迎下载使用。