数学七年级下册第八章 因式分解综合与测试课时练习
展开这是一份数学七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列因式分解正确的是( )
A. B.
C. D.
2、将分解因式,正确的是( )
A. B.
C. D.
3、可以被24和31之间某三个整数整除,这三个数是( )
A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,30
4、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
5、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
6、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
7、下列各式中从左到右的变形中,是因式分解的是( )
A. B.
C. D.
8、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
9、下列因式分解正确的是( )
A. B.
C. D.
10、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若x+y=5,xy=6,则x2y﹣xy2的值为 ___.
2、分解因式:2x2-4x=_____.
3、单项式2x2y3与6xy的公因式是_______.
4、因式分解:______.
5、已知a2+a-1=0,则a3+2a2+2021=________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1); (2).
2、分解因式:
(1);
(2).
3、因式分解:
①3x-12x3;
②-2a3+12a2-18a
4、请将下列各式因式分解.
(1)3a(x﹣y)﹣5b(y﹣x);
(2)x2(a﹣b)2﹣y2(b﹣a)2.
(3)2xmyn﹣1﹣4xm﹣1yn(m,n均为大于1的整数).
5、因式分解:
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
3、B
【解析】
【分析】
先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.
【详解】
解:
所以可以被26,27,28三个整数整除,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.
4、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
5、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
6、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
7、C
【解析】
【分析】
由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、,是整式的乘法,不是因式分解故A错误;
B、,是整式不是因式分解;
C、,是因式分解;
D、右边不是整式的积的形式(含有分式),不是因式分解;
故选:C.
【点睛】
本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
8、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
9、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
二、填空题
1、6或-6##-6或6
【解析】
【分析】
先利用完全平方公式并根据已知条件求出x-y的值,再利用提公因式法和平方差公式分解因式,然后整体代入数据计算.
【详解】
解:∵x+y=5,xy=6,
∴(x-y)2=(x+y)2-4xy=1,
∴x-y=±1,
∴x2y-xy2=xy(x-y)=6(x-y),
当x-y=1时,原式=6×1=6;
当x-y=-1时,原式=6×(-1)=-6.
故答案为:6或-6.
【点睛】
本题主要考查了提公因式法分解因式,根据完全平方式的两个公式之间的关系求出(x-y)的值是解本题的关键,也是难点.
2、##
【解析】
【分析】
根据提公因式法因式分解即可
【详解】
解:2x2-4x=
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.
3、2xy
【解析】
【分析】
由公因式的定义进行判断,即可得到答案.
【详解】
解:根据题意,
2x2y3与6xy的公因式是2xy.
故答案为:2xy.
【点睛】
本题考查了公因式的定义,解题的关键是熟记定义进行解题.
4、
【解析】
【分析】
先提取公因式,再用完全平方公式分解即可.
【详解】
解:,
=,
=
故答案为:.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.
5、2022
【解析】
【分析】
将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.
【详解】
解:∵a2+a-1=0,
∴a2=1-a、a2+a=1,
∴a3+2a2+2021,
=a•a2+2(1-a)+2021,
=a(1-a)+2-2a+2021,
=a-a2-2a+2023,
=-a2-a+2023,
=-(a2+a)+2023,
=-1+2023=2022.
故答案为:2022
【点睛】
本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.
三、解答题
1、(1);(2).
【解析】
【分析】
(1)提取公因式,进行因式分解;
(2)提取公因式后,再利用平方差公式进行因式分解.
【详解】
解:(1);
(2),
.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.
2、(1);(2)
【解析】
【分析】
(1)先提取公因式,然后再根据平方差公式进行因式分解即可;
(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
3、①;②.
【解析】
【分析】
①先提取公因式,再利用平方差公式因式分解;
②先提取公因式,再利用完全平方公式因式分解.
【详解】
解:①原式=
=;
②原式=
=.
【点睛】
本题考查综合利用提公因式法和公式法因式分解.一般能提公因式先提取公因式,再考虑能否运用公式法因式分解.
4、(1)(x﹣y)(3a+5b);(2)(a﹣b)2(x -y)(x +y);(3).
【解析】
【分析】
(1)首先将3a(x﹣y)﹣5b(y﹣x)变形为3a(x﹣y)+5b(x﹣y),然后利用提公因式法分解因式即可;
(2)首先将x2(a﹣b)2﹣y2(b﹣a)2变形为x2(a﹣b)2﹣y2(a﹣b)2,然后利用提公因式法分解因式即可;
(3)利用提公因式法分解因式即可求解;
【详解】
解:(1)3a(x﹣y)﹣5b(y﹣x)
=3a(x﹣y)+5b(x﹣y)
=(x﹣y)(3a+5b)
(2)x2(a﹣b)2﹣y2(b﹣a)2
=x2(a﹣b)2﹣y2(a﹣b)2
=(a﹣b)2(x2﹣y2)
=(a﹣b)2(x -y)(x +y)
(3)2xmyn﹣1﹣4xm﹣1yn
=
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
5、
【解析】
【分析】
把原式分组成,然后利用完全平方公式和平方差公式化简即可.
【详解】
解:原式
【点睛】
本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共16页。试卷主要包含了已知x,y满足,则的值为等内容,欢迎下载使用。
这是一份北京课改版第八章 因式分解综合与测试单元测试当堂达标检测题,共15页。试卷主要包含了若,则E是等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试课后复习题,共14页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。