![2021-2022学年北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12675238/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12675238/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12675238/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北师大版七年级下册第五章 生活中的轴对称综合与测试课后测评
展开
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课后测评,共20页。试卷主要包含了下列图案中是轴对称图形的是,下列图形不是轴对称图形的是.等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A. B. C. D.2、在千家万户团圆的时刻,我市一批医务工作者奔赴武汉与疫情抗争,他们是“最美逆行者”.下列艺术字中,可以看作是轴对称图形的是( )A. B. C. D.3、下列图形中不是轴对称图形的是( ).A. B. C. D.4、下列图案中是轴对称图形的是( )A. B.C. D.5、如图,下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.46、下列图形不是轴对称图形的是( ).A. B. C. D.7、如图,△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列结论不一定正确的是( )A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.ABB′C′8、如图,在的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的为格点三角形,在图中与成轴对称的格点三角形可以画出( )A.6个 B.5个 C.4个 D.3个9、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A.%% B.∵∴ C.≤≥ D.@@10、下列图形中,属于轴对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图①,在长方形ABCD中,E点在AD上,并且∠AEB=60°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=10°,则∠DEC的度数为 ___度.2、如图,∠AOB=30°,M,Q在OA上,P,N在OB上,OM=1,ON=,则MP+PQ+QN的最小值是______________.3、如图,△ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连接AE、AF.根据图中标示的角度,可知∠EAF=___°.4、在一条可以折叠的数轴上,A,B表示的数分别是-16,9,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是_______.5、如图,△ABD和△ACD关于直线AD对称,若S△ABC=12,则图中阴影部分面积为 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中,△ABC的顶点A(0,-2),B(2,-4),C(4,-1);(1)画出与△ABC关于轴对称的图形△A1B1C1,并写出点B1的坐标;(2)四边形AA1C1C的面积为___________2、如图所示,(1)作出ABC关于y轴对称的图形A1B1C1;(2)在x轴上确定一点P,使得PA+PC最小.3、如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.4、如图,在平面直角坐标系中,各顶点的坐标分别为:,,.(1)在图中作,使与关于y轴对称;(2)在(1)的条件下,写出点A、B、C的对应点、、的坐标.5、如图,小强拿一张正方形的纸片(图①),将其沿虚线对折一次得图②,再沿图②中的虚线对折得图③,然后用剪刀沿图③中的虚线剪去一个角再打开,请你画出打开后的几何图形. -参考答案-一、单选题1、A【分析】利用轴对称图形的概念进行解答即可.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.【点睛】本题主要是考查了轴对称图形的概念,判别轴对称图形的关键是找对称轴.2、B【分析】把一个图形沿某一条直线对折,直线两旁的部分能够完全重合的图形叫做轴对称图形,根据定义判断即可.【详解】解:A、不是轴对称图形.B、是轴对称图形.C、不是轴对称图形.D、不是轴对称图形.故选:B.【点睛】本题主要是考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解题的关键.3、C【分析】根据称轴的定义进行分析即可.【详解】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐一判断即可.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误.故选:B.【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.5、B【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形, 故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.6、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.7、D【分析】根据轴对称的性质解答.【详解】解:∵△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,∴AC=A′C′,BO=B′O,AA′⊥MN,但ABB′C′不正确,故选:D.【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键.8、A【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】解:符合题意的三角形如图所示:分三类对称轴为横向:对称轴为纵向:对称轴为斜向:满足要求的图形有6个.故选:A.【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.9、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出.【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C.【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键.10、A【分析】根据轴对称的定义,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称图形判断即可;【详解】根据轴对称图形的定义可知,是轴对称图形;故选A.【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键.二、填空题1、35【分析】由折叠可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,进而可得答案.【详解】解:由折叠可得BE平分,CE平分, ∵∠AEB=60°, ∴=2∠AEB=120°, ∵, ∴ ∴∠CED=. 故答案为:35.【点睛】本题考查角的和差关系,轴对称的性质,根据折叠的性质得到BE平分,CE平分是解本题关键.2、【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【详解】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,.故答案为:.【点睛】本题考查了轴对称-最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.3、106【分析】连接AD,根据轴对称的性质求出,,再根据三角形的内角和定理求出,最后应用等价代换思想即可求解.【详解】解:如下图所示,连接AD.∵点E和点F是点D分别以AB、AC为对称轴画出的对称点,∴,.∵,,∴.∴.故答案为:106.【点睛】本题考查轴对称的性质,熟练掌握该知识点是解题关键.4、-3【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为−16,9,∴AB=9−(−16)=25,∵折叠后AB=1,∴BC==12,∵点C在B的左侧,∴C点表示的数为9-12=−3.故答案为:-3.【点睛】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.5、6【分析】根据轴对称的性质可得,,由此即可得出答案.【详解】解:和关于直线对称,,,,则图中阴影部分面积为,故答案为:6.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题关键.三、解答题1、(1)见解析;(2,4);(2)12【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,然后连线即可;(2)作出图象可得四边形为等腰梯形,根据梯形面积公式求解即可.【详解】解:(1)先找出对称点A1(0,2),B1(2,4),C1(4,1),依次连接,如图,△A1B1C1为所作;∴B1(2,4);(2)如图所示,四边形为等腰梯形,,,,∴,故答案为:12.【点睛】本题考查了作轴对称图形:先找对称点然后依次连接即可,结合图象求解是解题关键.2、(1)见解析;(2)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作点C关于x轴的对称点C′,再连接AC′,与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求.【点睛】本题考查轴对称的综合应用,熟练掌握轴对称图形的性质及“两点之间线段最短”的基本事实是解题关键.3、(1)见详解;(2)150°【分析】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【详解】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°−∠C=150°.【点睛】本题主要考查了平行线的性质与判定,三角形的外角性质,角平分线的定义,关键是综合应用这些性质解决问题.4、(1)见详解;(2)(3,2)、(4,-3)、(1,-1)【分析】(1)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标为相反数,画出即可;(2)根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标为相反数,写出各顶点坐标即可.【详解】解:(1)如图所示:(2)(3,2)、(4,-3)、(1,-1)【点睛】本题考查了根据轴对称变换作图,熟知关于对称轴对称的点的坐标特点是解答此题的关键.5、见解析.【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【详解】解:如图所示:【点睛】本题考查剪纸问题,对于此类问题,只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力.
相关试卷
这是一份七年级下册第五章 生活中的轴对称综合与测试同步练习题,共20页。
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课后作业题,共18页。试卷主要包含了下列说法正确的是,下列四个图形分别是节能,下列图形中不是轴对称图形的是,下列图形为轴对称图形的是,如图,直线等内容,欢迎下载使用。
这是一份数学七年级下册第五章 生活中的轴对称综合与测试课时作业,共19页。试卷主要包含了下列图案中是轴对称图形的是,下列图形中不是轴对称图形的是.等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)