数学七年级下册第五章 生活中的轴对称综合与测试课时作业
展开
这是一份数学七年级下册第五章 生活中的轴对称综合与测试课时作业,共19页。试卷主要包含了下列图案中是轴对称图形的是,下列图形中不是轴对称图形的是.等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案是轴对称图形的是( )A. B. C. D.2、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是( )A. B. C. D.3、下列图形是轴对称图形的是( )A. B. C. D.4、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为( )A. B. C. D.5、下列图案中是轴对称图形的是( )A. B.C. D.6、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.喜 B.欢 C.数 D.学7、下列图形中不是轴对称图形的是( ).A. B. C. D.8、下列四个图形中,不是轴对称图形的为( )A. B. C. D.9、如图,下列图形中,轴对称图形的个数是( )A.1个 B.2个 C.3个 D.4个10、下列图形中,是轴对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,动点M在线段AC上运动(不与端点重合),点M关于边AD,DC的对称点分别为M1,M2,连接M1M2,点D在M1M2上,则在点M的运动过程中,线段M1M2长度的最小值是_______.2、如图,在ABC中,∠BAC=80°,∠C=45°,AD是ABC的角平分线,那么∠ADB=_____度.3、如图,ABC 与关于直线 l 对称,则∠B 的度数为__________.4、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕.若与重合,则∠EBD为______度.5、如图,是轴对称图形且只有两条对称轴的是__________(填序号).三、解答题(5小题,每小题10分,共计50分)1、如图所示,(1)作出ABC关于y轴对称的图形A1B1C1;(2)在x轴上确定一点P,使得PA+PC最小.2、如图,边长为1的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)画出△ABC关于x轴的对称图形△DEF(其中点A、B、C的对称点分别是D、E、F),则点D坐标为 .(2)在y轴上找一点P,使得PA+PC最短,请画出点P所在的位置,并写出点P的坐标.3、如图,从图形Ⅰ到图形Ⅱ是进行了平移还是轴对称?如果是轴对称,找出对称轴;如果是平移,是怎样的平移?4、(1)如图1,直线两侧有两点A,B,在直线上求一点C,使它到A、B两点的距离之和最小(作法不限,保留作图痕迹,不写作法).(2)知识拓展:如图2,直线同侧有两点A,B,在直线上求一点C,使它到A,B两点的距离之和最小(作法不限,保留作图痕迹,不写作法).5、如图,在锐角∠AOB的内部有一点P,试在∠AOB的两边上各取一点M,N,使得△PMN的周长最小.(保留作图痕迹) -参考答案-一、单选题1、C【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2、D【分析】根据轴对称图形的概念分别判断得出答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.4、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A.【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.5、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐一判断即可.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误.故选:B.【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.6、A【分析】利用轴对称图形的概念可得答案.【详解】解:A、是轴对称图形,故此选项合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不符合题意;故选:A.【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7、C【分析】根据称轴的定义进行分析即可.【详解】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;对各选项依次进行判断即可.【详解】解:选项A是等腰梯形,是轴对称图形,不合题意;选项B是等腰三角形是轴对称图形,不合题意;选项C是旋转对称图图形,不是轴对称图形,符合题意;选项D正五边形是轴对称图形,不合题意;故选:C.【点睛】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.9、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;∴轴对称图形有2个,故选B.【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义.10、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.二、填空题1、【分析】过D作于,连接,根据题意可得,从而可以判定M1M2最小值为,即可求解.【详解】解:过D作于,连接,如图:长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M关于边AD,DC的对称点分别为M1,M2,∴DM1=DM=DM2,∴,线段M1M2长度最小即是DM长度最小,此时DM⊥AC,即M与重合,M1M2最小值为.故答案为:.【点睛】此题考查了轴对称的性质,掌握轴对称的有关性质将的最小值转化为的最小值是解题的关键.2、【分析】根据角平分线的定义求得,进而根据三角形的外角性质即可求得的度数.【详解】∠BAC=80°,AD是ABC的角平分线,又∠C=45°故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键.3、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵ 与关于直线 l 对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.4、90【分析】根据折叠的性质和平角的定义即可得到结论.【详解】解:由折叠可知,∠ABE=∠A'BE=∠ABA′,∠CBD=∠C'BD=∠CBC′,∴∠DBE=∠A'BE+∠C'BD=∠ABA′+∠CBC′=(∠ABA'+∠CBC')=×180°=90°.故答案为:90.【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、①②【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此即可判断图形的对称轴条数及位置.【详解】图标中,是轴对称图形的有①②③,其中只有2条对称轴的是①②,有4条对称轴的是③。故答案为:①②.【点睛】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数的灵活应用,这里要求学生熟记已学过的特殊图形的对称轴特点进行解答.三、解答题1、(1)见解析;(2)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作点C关于x轴的对称点C′,再连接AC′,与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求.【点睛】本题考查轴对称的综合应用,熟练掌握轴对称图形的性质及“两点之间线段最短”的基本事实是解题关键.2、(1)见解析,(﹣4,﹣4);(2)见解析,(0,2)【分析】(1)先分别作出A、B、C关于x轴的对称点D、E、F,再连接D、E、F三点即可;(2)由上问已知,C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,求出直线的解析式,即可求出答案.【详解】(1)△ABC关于x轴的对称图形△DEF如图所示:D(﹣4,﹣4);故答案为:(﹣4,﹣4);(2)如图所示:C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,设直线的解析式为,把,代入得:,解得:,,令,则,.【点睛】本题考查了轴对称变换,掌握轴对称的坐标点特点是解题关键.3、(1)图形Ⅰ和图形Ⅱ关于y轴对称;(2)将图形Ⅰ先向左平移5个单位长度,再向下平移3个单位长度,得到图形Ⅱ;(3)将图形Ⅰ先向右平移5个单位长度,再向下平移3个单位长度,得到图形Ⅱ;(4)图形Ⅰ和图形Ⅱ关于x轴对称.【分析】根据轴对称的性质与平移的性质对各图形分析判断进行解答即可.【详解】解:(1)中从图形Ⅰ到图形Ⅱ是进行了轴对称变换,对称轴是y轴;(2)中从图形Ⅰ到图形Ⅱ是进行了平移变换,先向左平移5个单位长度,再向下平移3个单位长度;(3)中从图形Ⅰ到图形Ⅱ是进行了平移变换,先向右平移5个单位长度,再向下平移3个单位长度;(4)中从图形Ⅰ到图形Ⅱ是进行了轴对称变换,对称轴是x轴.【点睛】本题考查了轴对称的性质,平移的性质,熟练掌握性质并准确识图是解题的关键.4、(1)见解析;(2)见解析【分析】(1)根据两点之间线段最短,连接AB,交已知直线于点C即可;(2)根据两点之间线段最短,作A关于已知直线的对称点E,连接BE交已知直线于C,由此即可得出答案.【详解】解:(1)连接AB,交已知直线于点C,则该点C即为所求;(2)作点A关于已知直线的对称点E,连接BE交已知直线于点C,连接AC,BC,则此时C点符合要求.【点睛】此题主要考查了平面内最短路线问题求法,熟练掌握轴对称图形的性质是解决本题的关键.5、见详解【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,△PMN即为所求求作三角形.【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,PN,△PMN即为所求作三角形.理由:由轴对称的性质得MP=ME,NP=NF,∴△PMN的周长=PM+MN+PN=EM+MN+NF=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.【点睛】本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.
相关试卷
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课后测评,共19页。
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课后作业题,共18页。试卷主要包含了下列说法正确的是,下列四个图形分别是节能,下列图形中不是轴对称图形的是,下列图形为轴对称图形的是,如图,直线等内容,欢迎下载使用。
这是一份2021学年第五章 生活中的轴对称综合与测试练习,共22页。试卷主要包含了下列说法正确的是,下列图形中,是轴对称图形的是,下列图形中不是轴对称图形的是.,下列图形是轴对称图形的是,下列图案中,属于轴对称图形的是,下列四个图案中是轴对称图形的是等内容,欢迎下载使用。