所属成套资源:备战2022年中考(通用版)一轮复习分类专项训练卷(含答案解析)
备战2022年中考(通用版)一轮复习分类专项训练卷:一元二次方程(word版,含解析)
展开
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:一元二次方程(word版,含解析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战2022年中考(通用版)一轮复习分类专项训练卷一元二次方程一、选择题1.一元二次方程,配方后可形为( )A. B.C. D.2.若关于的一元二次方程 的一个根是2,则的值为( )A.2 B.3 C.4 D.53.下列一元二次方程中,无实数根的是( )A. B.C. D.4.关于x的一元二次方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.实数根的个数由m的值确定5.关于的方程有两个不相等的实根、,若,则的最大值是( )A.1 B. C. D.26.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数P,得到方程的两个根是5,﹣4,则原来的方程是( )A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=07.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可到方程为( )A. B. C. D.8.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )A.5 B.6 C.7 D.89.某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为( )A. B. C. D.10.已知关于x的一元二次方程x2-kx+k-3=0的两个实数根分别为,且,则k的值是( )A.-2 B.2 C.-1 D.1二、填空题11.方程 x2-4x=0的实数解是 ____.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为 ___.13.已知一元二次方程的两根分别为m,n,则的值为______.14.劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.对于任意实数a、b,定义一种运算:,若,则x的值为________.16.若m,n是一元二次方程的两个实数根,则的值为___________.三、解答题17.解方程: 18.解方程:x2﹣5x+6=0 19.某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,求增加了多少行或多少列? 20.已知关于的一元二次方程有实数根.(1)求的取值范围;(2)若该方程的两个实数根分别为、,且,求的值. 21.已知关于x的一元二次方程有,两实数根.(1)若,求及的值;(2)是否存在实数,满足?若存在,求出求实数的值;若不存在,请说明理由. 22.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少? 参考答案1.A【分析】把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.D【分析】根据韦达定理,可知另一个根为,再根据韦达定理可知的值为根之和,即可求得【详解】的一个根为2,设另一根为,解得又故选D【点睛】本题考查了一元二次方程根与系数的关系即韦达定理,熟悉韦达定理是解题的关键.3.D【分析】计算出各个选项中的Δ的值,然后根据Δ>0有两个不等式的实数根,Δ=0有两个相等实数根,Δ<0无实数根判断即可.【详解】解:在x2-2x-3=0中,Δ=b2-4ac=(-2)2-4×1×(-3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;在x2+3x+2=0中,Δ=b2-4ac=32-4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;在x2-2x+1=0中,Δ=b2-4ac=(-2)2-4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;在x2+2x+3=0中,Δ=b2-4ac=22-4×1×3=-8<0,即该方程无实数根,故选项D符合题意;故选:D.【点睛】本题考查根的判别式,解答本题的关键是明确Δ>0有两个不等式的实数根,Δ=0有两个相等实数根,Δ<0无实数根.4.A【分析】先确定a、b、c的值,计算的值进行判断即可求解.【详解】解:由题意可知:a=1,b=m,c=-m-2,∴,∴方程有两个不相等实数根.故选A.【点睛】本题考查一元二次方程根的判别式,是常见考点,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根,熟记判别式并灵活应用是解题关键.5.D【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.【详解】解:由方程有两个不相等的实根、可得,,,∵,可得,,即化简得则故最大值为故选D【点睛】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.6.B【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是﹣3,1,所以此时方程为: 即: 小明看错了一次项系数P,得到方程的两个根是5,﹣4,所以此时方程为: 即: 从而正确的方程是: 故选:【点睛】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.7.D【分析】平均一人传染了x人,根据有一人患了流感,第一轮有(x+1)人患流感,第二轮共有x+1+(x+1)x人,即81人患了流感,由此列方程求解.【详解】x+1+(x+1)x=81
整理得,(1+x)2=81.
故选:D.【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解.8.B【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可.【详解】解:设有x个班级参加比赛,,,解得:(舍),则共有6个班级参加比赛,故选:B.【点睛】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系.9.A【分析】设每次降价的百分率为x,利用经过两次降价后的价格=原售价×(1-降价的百分率)2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出每次降价的百分率.【详解】解:设每次降价的百分率为,依题意得:,解得:,(不合题意,舍去).故选:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.D【分析】利用根与系数的关系得出,,进而得出关于的一元二次方程求出即可.【详解】解:关于的一元二次方程的两个实数根分别为,,,,,,,整理得出:,解得:,故选:D.【点睛】本题考查了一元二次方程,,,为常数)根与系数的关系:,.11.x1=0,x2=4.【分析】方程利用因式分解法求出解即可.【详解】解:方程x2-4x=0,分解因式得:x(x-4)=0,可得x=0或x-4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.12.且【分析】根据题意可知,代入求解即可.【详解】解:一元二次方程ax2+4x﹣2=0,,∵关于x的一元二次方程ax2+4x﹣2=0有实数根,∴且,即,解得:且故答案为:且.【点睛】本题考查了根的判别式,熟知:,一元二次方程有两个不相等的实数根;,一元二次方程有两个相等的实数根;,方程无实数根,是解题的关键.13.【分析】根据一元二次方程根与系数关系的性质计算,即可得到答案.【详解】∵一元二次方程的两根分别为m,n∴, ∴故答案为:.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程根与系数的性质,从而完成求解.14.【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:300(1+x);第二年粮食的产量为:300(1+x)(1+x)=300(1+x)2;依题意,可列方程:300(1+x)2=363;故答案为:300(1+x)2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.或2【分析】根据新定义的运算得到,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:,整理可得,解得,,故答案为:或2.【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.16.3【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程()的两根时,,.也考查了一元二次方程的解.17. 【分析】根据公式法求解即可;【详解】由方程可得a=1,b=1,c=-1,x===;18.x1=2,x2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.19.增加了3行3列.【分析】设增加了行,则增加的列数为,用增加后的总人数原队伍的总人数列出方程求解即可.【详解】解:设增加了行,则增加的列数为,根据题意,得:,整理,得:,解得,(舍,答:增加了3行3列.【点睛】本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系.20.(1);(2)【分析】(1)根据方程有实数根的条件,即求解即可;(2)由韦达定理把和分别用含m的式子表示出来,然后根据完全平方公式将变形为,再代入计算即可解出答案.【详解】(1)由题意可得:解得:即实数m的取值范围是.(2)由可得:∵;∴ 解得:或∵∴即的值为-2.【点睛】本题主要考查的是根的判别式、根与系数的关系,要牢记:(1)当时,方程有实数根;(2)掌握根与系数的关系,即韦达定理;(3)熟记完全平方公式等是解题的关键.21.(1),;(2)存在,【分析】(1)根据题意可得△>0,再代入相应数值解不等式即可,再利用根与系数的关系求解即可;(2)根据根与系数的关系可得关于m的方程,整理后可即可解出m的值.【详解】解:(1)由题意:Δ=(−6)2−4×1×(2m−1)>0,∴m<5,将x1=1代入原方程得:m=3,又∵x1•x2=2m−1=5,∴x2=5,m=3;(2)设存在实数m,满足,那么有,即,整理得:,解得或.由(1)可知,∴舍去,从而,综上所述:存在符合题意.【点睛】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.以及根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.22.(1)10%;(2)13.31万【分析】(1)设这两个月参观人数的月平均增长率为,根据题意列出等式解出即可;(2)直接利用(1)中求出的月平均增长率计算即可.【详解】(1)解:设这两个月参观人数的月平均增长率为,由题意得:,解得:,(不合题意,舍去),答:这两个月参观人数的月平均增长率为.(2)(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.
相关试卷
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:实数 (word版,含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:规律题型(word版,含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:分式及其化简求值(word版,含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。