所属成套资源:备战2022年中考(通用版)一轮复习分类专项训练卷(含答案解析)
备战2022年中考(通用版)一轮复习分类专项训练卷:统计与概率(word版,含解析)
展开
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:统计与概率(word版,含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战2022年中考(通用版)一轮复习分类专项训练卷
统计与概率
一、选择题
1.下列事件是必然事件的是( )
A.没有水分,种子发芽 B.如果a、b都是实数,那么a+b=b+a
C.打开电视,正在播广告 D.抛掷一枚质地均匀的硬币,正面向上
2.下列调查中最适合采用全面调查(普查)的是( )
A.了解巴河被污染情况 B.了解巴中市中小学生书面作业总量
C.了解某班学生一分钟跳绳成绩 D.调查一批灯泡的质量
3.下列说法正确的是( )
A.为了解人造卫星的设备零件的质量情况,应选择抽样调查
B.了解九年级(1)班同学的视力情况,应选择全面调查
C.购买一张体育彩票中奖是不可能事件
D.抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.下列说法正确的是( )
A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数
B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件
C.了解一批冰箱的使用寿命,采用抽样调查的方式
D.若平均数相同的甲、乙两组数据,,,则甲组数据更稳定
5.某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )
A.152,134 B.146,146 C.146,140 D.152,140
6.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )
A.甲 B.乙 C.丙 D.丁
7.信息技术课上,在老师的指导下,小好同学训练打字速度(字/),数据整理如下:15,17,23,15,17,17,19,21,21,18,对于这组数据,下列说法正确的是( )
A.众数是17 B.众数是15 C.中位数是17 D.中位数是18
8.某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为( )
A.8.6 B.9 C.12.2 D.12.6
9.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
10.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )
A. B. C. D.
二、填空题
11.现有一组数据4、5、5、6、5、7,这组数据的众数是___.
12.小丽的笔试成绩为100分,面试成绩为90分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是__分.
13.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是 ___.
14.已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为、,则___.(填“”、“”、“”)
15.有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.
16.从,-1,1,2,-5中任取一个数作为a,则抛物线的开口向上的概率是______.
17.在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同.摇匀后从中摸出一个球,记下颜色后再放回袋中.不断重复这一过程,共摸球100次.其中有40次摸到黑球,估计袋中红球的个数是__________.
18.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:
班级
参加人数
中位数
方差
平均数
甲
45
109
181
110
乙
45
111
108
110
某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;②乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);③甲班成绩的波动比乙班大,则正确结论的序号是____.
三、解答题
19.某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是__________.
(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.
20.某校在“庆祝建党100周年”系列活动中举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛.设竞赛成绩为x分,若规定:当时为优秀,时为良好,时为一般,现随机抽取30位同学的竞赛成绩如下:
98
88
90
72
100
78
95
92
100
99
84
92
75
100
85
90
93
93
70
92
78
89
91
83
93
98
88
85
90
100
(1)本次抽样调查的样本容量是________,样本数据中成绩为“优秀”的频率是_______;
(2)在本次调查中,A,B,C,D四位同学的竞赛成绩均为100分,其中A,B在九年级,C在八年级,D在七年级,若要从中随机抽取两位同学参加联盟校的党史知识竞赛,请用画树状图或列表的方法求出抽到的两位同学都在九年级的概率,并写出所有等可能结果.
21.为了迎接建党100周年,学校举办了“感党恩•跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;
(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.
22.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.
请根据以上信息解答下列问题:
(1)所抽取的学生作品的样本容量是多少?
(2)补全条形统计图.
(3)本次活动共征集作品1200件,估计绘画作品有多少件.
23.某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答下列问题
(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;
(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?
(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.
24.市环保部门为了解城区某一天18:00时噪声污染情况,随机抽取了城区部分噪声测量点这一时刻的测量数据进行统计,把所抽取的测量数据分成A、B、C、D、E五组,并将统计结果绘制了两幅不完整的统计图表.
组别
噪声声级x/dB
频数
A
55≤x<60
4
B
60≤x<65
10
C
65≤x<70
m
D
70≤x<75
8
E
75≤x<80
n
请解答下列问题:
(1)m= ,n= ;
(2)在扇形统计图中D组对应的扇形圆心角的度数是 °;
(3)若该市城区共有400个噪声测量点,请估计该市城区这一天18:00时噪声声级低于70dB的测量点的个数.
参考答案
1.B
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、没有水分,种子发芽,是不可能事件,本选项不符合题意;
B、如果a、b都是实数,那么a+b=b+a,是必然事件,本选项符合题意;
C、打开电视,正在播广告,是随机事件,本选项不符合题意;
D、抛掷一枚质地均匀的硬币,正面向上,是随机事件,本选项不符合题意;
故选:B.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2.C
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A.了解巴河被污染情况,适合抽样调查,故本选项不合题意;
B.了解巴中市中小学生书面作业总量,适合抽样调查,故本选项不合题意;
C.了解某班学生一分钟跳绳成绩,适合全面调查,故本选项符合题意;
D.调查一批灯泡的质量,适合抽样调查,故本选项不合题意;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3.B
【分析】
根据随机事件、必然事件和不可能事件的概念、全面调查和抽样调查的概念判断即可.
【详解】
解:A、为了解人造卫星的设备零件的质量情况,应选择全面调查,本选项说法错误,不符合题意;
B、了解九年级(1)班同学的视力情况,应选择全面调查,本选项说法正确,符合题意;
C、购买一张体育彩票中奖是随机事件,本选项说法错误,不符合题意;
D、抛掷一枚质地均匀的硬币刚好正面朝上是随机事件,本选项说法错误,不符合题意;
故选:B.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念、全面调查和抽样调查.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.C
【分析】
依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论.
【详解】
解:.任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;
.“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;
.了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;
.若平均数相同的甲、乙两组数据,,,则乙组数据更稳定,故原说法错误,不合题意;
故选:.
【点睛】
本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
5.C
【分析】
根据众数和中位数的定义求解即可.
【详解】
解:出现了2次,出现的次数最多,
这组数据的众数是146个;
把这些数从小到大排列为:121,122,134,146,146,152,
则中位数是(个.
故选:.
【点睛】
本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.
6.C
【分析】
利用平均数和方差的意义进行判断.
【详解】
解:由折线统计图得:丙、丁的成绩在92附近波动,甲、乙的成绩在91附近波动,
∴丙、丁的平均成绩高于甲、乙,
由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,
∴这四人中丙的平均成绩好又发挥稳定,
故选:C.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.
7.A
【分析】
根据中位数、众数的概念求解可得.
【详解】
解:以上数据重新排列为:15,15,17,17,17,18,19,21,21,23,
众数为17、中位数为,
故选:.
【点睛】
本题考查的是众数和中位数的概念;熟练掌握中位数、众数的概念是解题的关键.
8.D
【分析】
根据极差的公式:极差=最大值-最小值,找出最大数据和最小数据,做差即可.
【详解】
解:由题意可知,数据中最大的值33.6,最小值21,
所以极差为.
故选:D.
【点睛】
本题考查极差的定义,属于 基础题型,极差反映了一组数据变化范围的大小.
9.A
【分析】
首先判断各图形是否是轴对称图形,再根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.
【详解】
解:∵线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,
分别用A、B、C、D表示线段、等边三角形、平行四边形和正六边形,
∴随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为=,
故选:A.
【点睛】
本题考查概率公式、轴对称图形,解答本题的关键是写出题目中的图形是否为轴对称图形,明确两张都是轴对称图形是同时发生的.
10.B
【分析】
由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面只有一个面涂有颜色,有6种结果,根据几何概率及其概率的计算公式,即可求解.
【详解】
解:解:由题意,在一个棱长为3cm的正方体的表面涂上颜色,将其分割成27个棱长为1cm的小正方体,
在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,
可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,
满足条件的事件是取出的小正方体表面有一个面都涂色,有6种结果,
所以所求概率为.
故选:B.
【点睛】
本题考查几何概率的计算,涉及正方体的几何结构,属于基础题.
11.5
【分析】
根据众数的意义求解即可.
【详解】
这组数据中出现次数最多的是5,共出现3次,因此众数是5,故答案为:5.
【点睛】
本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.
12.96
【分析】
根据加权平均数的公式计算可得.
【详解】
解:小丽的平均成绩是=96(分),
故答案为:96.
【点睛】
本题考查的是加权平均数的求法.本题易出现的错误是求100,90这两个数的平均数,对平均数的理解不正确.
13.0.3
【分析】
利用1减去第1、2组的频率即可得出第3组的频率.
【详解】
解:1-0.2-0.5=0.3,
∴第3组的频率是0.3;
故答案为:0.3
【点睛】
本题考查了频率,熟练掌握频率的定义和各小组的频率之和为1是解题的关键.
14.>
【分析】
先计算两组数据的平均数,再计算它们的方差,即可得出答案.
【详解】
解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,
乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,
则甲= ×(6+7×3+8×2+9×3+10)=8,
乙=×(6+7×2+8×4+9×2+10)=8,
∴S甲2=×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]
=×[4+3+3+4]
=1.4;
S乙2=×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]
=×[4+2+2+4]
=1.2;
∵1.4>1.2,
∴S甲2>S乙2,
故答案为:>.
【点睛】
题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
15.
【分析】
卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.
【详解】
解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,
根据概率公式,(轴对称图形).
故答案为:.
【点睛】
本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.
16.
【分析】
根据概率计算公式,可得事件总的可能结果数5,事件发生的可能结果数2,问题即可解决.
【详解】
从5个数中任取一个的可能结果数为5,使抛物线的开口向上的a值有2个,分别为1和2,则所求的概率为;
故答案为:.
【点睛】
本题考查了简单事件的概率的计算,二次函数的性质,求出事件总的可能结果数及事件发生的可能结果数是关键.
17.6
【分析】
估计利用频率估计概率可估计摸到黑球的概率为 ,然后根据概率公式构建方程求解即可.
【详解】
解:设袋中红球的个数是x个,根据题意得:
,
解得:x=6,
经检验:x=6是分式方程的解,
即估计袋中红球的个数是6个.
故答案为:6.
【点睛】
本题考查了利用频率估计概率,解题的关键是熟练掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
18.①②③
【分析】
首先根据表格信息即可得出二者平均数一样,然后再观察表格发现甲班的中位数是109,乙班的中位数是111,由此进一步比较二者的优秀人数即可,最后根据二者的方差大小即可得出哪个班波动大或小,据此进一步得出答案即可.
【详解】
甲、乙两班的平均数都是110,故①正确,
∵甲班的中位数是109,乙班的中位数是111,乙班中位数比甲班的大,
∴乙班优秀的人数多于甲班优秀的人数,故②正确,
∵甲班的方差大于乙班的方差,
∴甲班的波动情况大,故③正确;
综上所述,①②③都正确,
故答案为①②③
【点睛】
本题主要考查了平均数、中位数与方差的性质,熟练掌握相关概念是解题关键.
19.(1);(2)
【分析】
(1)直接根据概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,
故答案为:;
(2)列表如下:
由表可知,共有9种等可能结果,其中小辰和小安选择同一种型号免洗洗手液有3种结果,
所以小辰和小安选择同一种型号免洗洗手液的概率为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
20.(1)30,0.6;(2)图表见解析,
【分析】
(1)根据题意,即可得到样本容量为30,找出90分及以上出现的数量,然后除以30,即可得到答案;
(2)利用列表法得到所有可能的结果,以及抽到的两位同学都在九年级的结果,即可求出答案.
【详解】
解:(1)根据题意,随机抽取30位同学的竞赛成绩,
∴样本容量为30;
由表格可知,90分及以上出现的次数有18次,
∴样本数据中成绩为“优秀”的频率是;
故答案为:30,.
(2)根据题意,列表如下:
第一人
第二人
A
B
C
D
A
—
BA
CA
DA
B
AB
—
CB
DB
C
AC
BC
—
DC
D
AD
BD
CD
—
其中抽到的两位同学都在九年级的结果共有2种,即BA,AB,
∴;
【点睛】
本题考查了用列表法或树状图法求概率,以及抽样调查,解题的关键是掌握题意,正确的列出表格进行解题.
21.(1);(2)见解析,
【分析】
(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;
(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.
【详解】
解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,
∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是,
故答案为:;
(2)用列表法表示所有可能出现的结果如下:
A
B
C
D
A
——
AB
AC
AD
B
BA
——
BC
BD
C
CA
CB
——
CD
D
DA
CB
DC
——
共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,
∴小颖抽取的两张卡片中有一张是演讲社团C的概率是=.
【点睛】
本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.
22.(1)120;(2)图形见解析;(3)360件
【分析】
(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;
(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;
(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.
【详解】
解:(1)根据题意得:(件),
所抽取的学生作品的样本容量是120;
(2)绘画作品为(件),
补全统计图,如图所示:
(3)根据题意得:(件),
则绘画作品约有360件.
答:本次活动共征集作品1200件时,绘画作品约有360件.
【点睛】
本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23.(1)50名;(2)见解析;(3)600名;(4)
【分析】
(1)根据动画类人数及其百分比求得总人数;
(2)总人数减去其他类型人数可得体育类人数,据此补全图形即可;
(3)用样本估计总体的思想解决问题;
(4)根据题意先画出列表,得出所有情况数,再根据概率公式即可得出答案.
【详解】
解:(1)这次被调查的学生人数为(名;
(2)喜爱“体育”的人数为(名,
补全图形如下:
(3)估计全校学生中喜欢体育节目的约有(名;
(4)列表如下:
甲
乙
丙
丁
甲
(乙,甲)
(丙,甲)
(丁,甲)
乙
(甲,乙)
(丙,乙)
(丁,乙)
丙
(甲,丙)
(乙,丙)
(丁,丙)
丁
(甲,丁)
(乙,丁)
(丙,丁)
所有等可能的结果为12种,恰好选中甲、乙两位同学的有2种结果,
所以恰好选中甲、乙两位同学的概率为.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24.(1)12、6;(2)72;(3)260个
【分析】
(1)先由B组频数及其对应的百分比求出样本容量,再用样本容量乘以C这组对应的百分比求出m的值,继而根据5组的频数之和等于样本容量可得n的值;
(2)用360°乘以D组频数所占比例即可;
(3)用总个数乘以样本中噪声声级低于70dB的测量点的个数所占比例即可.
【详解】
解:(1)∵样本容量为10÷25%=40,
∴m=40×30%=12,
∴n=40﹣(4+10+12+8)=6,
故答案为:12、6;
(2)在扇形统计图中D组对应的扇形圆心角的度数是360°×=72°,
故答案为:72;
(3)估计该市城区这一天18:00时噪声声级低于70dB的测量点的个数为(个).
该市城区共有400个噪声测量点,估计该市城区这一天18:00时噪声声级低于70dB的测量点的个数为260个.
【点睛】
本题主要考查扇形统计图、用样本估计总体、频数(率)分布表,解题的关键是结合频数分布表和扇形统计图得出样本容量及样本估计总体.
相关试卷
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:实数 (word版,含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:规律题型(word版,含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:分式及其化简求值(word版,含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。