第一章《三角函数》(基础题)达标检测(二)-【课时分层课】2020-2021学年高一数学同步备课系列(北师大2019版第二册)
展开
这是一份第一章《三角函数》(基础题)达标检测(二)-【课时分层课】2020-2021学年高一数学同步备课系列(北师大2019版第二册),文件包含第一章《三角函数》基础题达标检测二原卷版-课时分层练2020-2021学年高一数学同步备课系列基础题北师大2019版第二册docx、第一章《三角函数》基础题达标检测二解析版-课时分层课2020-2021学年高一数学同步备课系列北师大2019版第二册docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
第一章《三角函数》(基础题)达标检测(二)【课时分层课】2020-2021学年高一数学同步备课系列一、单选题1.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.2.下列函数中,值域为的是( )A. B. C. D.3.函数的图象过点,为了得到的图象,可将的图象( )A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位4.函数的图象的一个对称中心的坐标为( )A. B. C. D.5.若点在角的终边上,则实数的值是( )A.4 B.2 C.-2 D.-46.若函数在区间上单调递减,则的取值范围是( )A. B. C. D.7.在平面直角坐标系xOy中,角α以Ox为始边,终边在射线y=2x(x≥0)上,则cosα的值是( )A. B. C. D.8.下列三个关于函数的命题:①只需将函数的图象向右平移个单位即可得到的图象;②函数的图象关于对称; ③函数在上单调递增.其中,真命题的个数为( )A.3 B.2 C.1 D.09.函数的图象与函数的图象所有交点的横坐标之和等于( )A.18 B.14 C.16 D.1210.设是某港口水的深度(米)关于时刻(时)的函数,其中.下表是该港口某一天从到时记录的时刻与水深的关系,经长期观测,函数的图象可以近似地看成函数的图象.下面的函数中,最能近似地表示表中数据间对应关系的是( )A., B.,C.,, D.,二、多选题11.下列函数中最小正周期为的是( )A. B. C. D.12.将函数的图象上所有点的横坐标缩小为原来的,纵坐标不变,再将图象向右平移个单位,得到函数的图象,则下列结论正确的是( )A. B.是图象的一条对称轴C.是图象的一个对称中心 D.在上单调递减三、填空题13.将化为形式为_____.14.若函数的最小正周期是,则_____.15.函数f(x)=sin的单调递减区间为________.16.若的图像关于直线对称,则实数a的值为________.四、解答题17.若点在角的终边上,求的值.18.已知函数0 (1)填表并在坐标系中用“五点法”画出函数在一个固期上的图象:(2)求的对称轴与对称中心;(3)求在区间上的最大值和最小值以及对应的值.19.已知函数()的最小正周期为,且其图象关于直线对称.(1)求和的值;(2)若,为锐角,求的值.20.已知函数,在一周期内,当时,取得最大值3,当时,取得最小值,求(1)函数的解析式;(2)求出函数的单调递增区间、对称轴方程、对称中心坐标;(3)当时,求函数的值域.21.已知函数.(1)用“五点法”画出函数在一个周期内的简图; (2)说明函数的图像可以通过的图像经过怎样的变换得到?(3)若,写出的值.22.函数的部分图象如图所示.(1)求函数的解析式; (2)当时,求的最大值.最小值及取得最大值.最小值时相应的值.