高一数学必修1人教A全册导学案:2.2.2《指数函数》(1)
展开2.2.2指数函数(1)
【自学目标】
- 掌握指数函数的概念、图象和性质;
- 能借助于计算机画指数函数的图象;
3. 能由指数函数图象归纳出指数函数的性质。
【知识描述】
1.指数函数的定义。
2.指数函数的性质
| |||
图象 |
|
| |
性质 | (1)定义域:R | ||
(2)值域:(0,+∞) | |||
(3)过点(0,1),即x=0时y=1 | |||
(4)在R上是增函数 | (4)在R上是减函数 | ||
【预习自测】
例1.下列函数中是指数函数的是 。
⑴; ⑵;
⑶; ⑷;
⑸; ⑹;
⑺; ⑻(,)
例2.已知指数函数的图象经过点(1,),求下列各个函数值:
⑴; ⑵; ⑶。
例3.比较大小:
⑴和; ⑵与; ⑶与。
例4.作出下列函数的图象,并说明它们之间的关系:
⑴; ⑵; ⑶。
【课堂练习】
1.在下列六个函数中: ①;②;③;④;⑤;⑥。若,且,则其中是指数函数的有( )
A.0个 B.1个 C.2个 D.3个
2.函数恒过定点 。
3.函数和的图象关于 对称。
4.已知函数(,)在[0,1]上的最大和最小值之和是3,求实数a的值。
5.设,求x的取值范围。
【归纳反思】
1.要根据指数函数的图象特征来熟记和研究指数函数的性质,并根据需要,对底数a分两种情况加以讨论,体会其中的数形结合和分类讨论思想;
2.注意图象的的平移变换的方法和规律,并能正确地运用这一方法和规律解有关函数图象的问题,加深对指数函数的图象和性质的认识和理解。
【巩固提高】
1.若集合,,则 ( )
A.A B B. C.B A D.
2.已知,则函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.图中曲线分别是指数函数的图象,则与1的大小关系是( )
A.
B.
C.
D.
4.已知,且,,,则( )
A. B.
C. D.M、N大小关系不确定
5.函数的值域是 ;
6.若指数函数在R上是减函数,则a的取值范围是 。
7.把函数y=f(x) 的图象向左、向下分别平移2个单位得到的图象,则f(x)= 。
8.比较的大小
9.已知函数(,)在[1,2]上的最大值比最小值大2,求实数a的值
10.试比较与(,且)的大小
例1 (2)(6)(8)
例2 (1) 1; (2) ; (3)
例3 < < >
课堂练习:
1. B
2. (3,4)
3. y轴
4. a = 2
5.
巩固提高:
1-4 AADA
5.
6.
7.
8.
9. a = 2
10. 当时, >;当时,>