|教案下载
搜索
    上传资料 赚现金
    高中数学人教A版教案必修5:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)
    立即下载
    加入资料篮
    高中数学人教A版教案必修5:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)01
    高中数学人教A版教案必修5:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)02
    高中数学人教A版教案必修5:2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年3.2 一元二次不等式及其解法教案

    展开
    这是一份2021学年3.2 一元二次不等式及其解法教案,共6页。教案主要包含了知识与技能,过程与方法,情感态度与价值观等内容,欢迎下载使用。

    3.2 一元二次不等式及其解法

    3.2.1 一元二次不等式的概念和一元二次不等式解法

    从容说课

    本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课.一元二次不等式及其解法教学分为三个学时,第一个学时先由生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,以此激发学生对科学的探究精神和严肃认真的科学态度.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式的概念,有利于一元二次不等式的解法的教学.讲述完一元二次不等式的概念后,再回归到先前的具体事例,总结一元二次不等式解法与二次函数的关系和一元二次不等式解法的步骤,由学生用表格将一元二次不等式解法与二次函数的数形关系的对应关系用图表形式表示出来;然后用一个程序框图把求解一般一元二次不等式的过程表示出来,根据这些图表,得出一元二次不等式解法与二次函数的关系两者之间的区别与联系,再辅以新的例题巩固.整个教学过程,探究一元二次不等式的概念,揭示一元二次不等式解法与二次函数的关系本质,引出一元二次不等式解法的步骤和过程,并及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.

    教学重点 1.从实际问题中抽象出一元二次不等式模型.

    2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

    教学难点 理解二次函数、一元二次方程与一元二次不等式的关系.

    教具准备 多媒体及课件,幻灯片三张

    三维目标

    一、知识与技能

    1.经历从实际情景中抽象出一元二次不等式模型的过程;

    2.通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系;

    3.会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.

    二、过程与方法

    1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;

    2.发挥学生的主体作用,作好探究性实验;

    3.理论联系实际,激发学生的学习积极性.

    三、情感态度与价值观

    1.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

    2.通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.

    教学过程

    导入新课

    上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(Internet Service Provider)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.

    某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时收费1.5元;公司B的收费原则是在用户上网的第一小时内收费1.7元,第二小时内收费1.6元,以后每小时减少0.1.(若用户一次上网时间超过17小时,按17小时计算)

    一般来说,一次上网时间不会超过17小时,所以,不妨一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A比选择公司B所需费用少?

    假设一次上网x小时,则A公司收取的费用为1.5x,那么B公司收取的费用为多少?怎样得来?

    结果是元,因为是等差数列,其首项为1.7,公差为-0.1,项数为x的和,即

    如果能够保证选择A公司比选择B公司所需费用少,则如何列式?

    由题设条件应列式为1.5x(0x17),整理化简得不等式x2-5x0.

    推进新课

    因此这个问题实际就是解不等式:x2-5x0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点.

    什么叫做一元二次不等式?

    含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c0ax2+bx+c0a≠0.例如2x2-3x-203x2-6x-2-2x2+30等都是一元二次不等式.

    那么如何求解呢?

    在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢?

    思考:对一次函数y=2x-7,当x为何值时,

    y=0?当x为何值时,y0?当x为何值时,y0?

    它的对应值表与图象如下:

    x

    2

    2.5

    3

    3.5

    4

    4.5

    5

    y

    -3

    -2

    -1

    0

    1

    2

    3

    由对应值表与图象(如上图)可知:

    x=3.5时,y=0,即2x-7=0;

    x3.5时,y0,即2x-70;

    x3.5时,y0,即2x-70.

    一般地,设直线y=ax+bx轴的交点是(x00),则有如下结果:

    1)一元一次方程ax+b=0的解是x0;

    2)①当a0时,一元一次不等式ax+b0的解集是{x|xx0};一元一次不等式ax+b0的解集是{x|xx0}.

    ②当a0时,一元一次不等式ax+b0的解集是{x|xx0};一元一次不等式ax+b0的解集是{x|xx0}.

    在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗?

    函数图象与x轴的交点横坐标为方程的根,不等式的解集为函数图象落在x轴上方(下方)部分对应的横坐标.

     

    a0

    a0

    一次函数

    y=ax+b(a≠0)

    的图象

    一元一次方程ax+b=0的解集

    {x|x=}

    {x|x=}

    一元一次不等式ax+b0的解集

    {x|x}

    {x|x}

    一元一次不等式ax+b0的解集

    {x|x}

    {x|x}

    在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

    在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x2-5x,当x为何值时,y=0?当x为何值时,y0?当x为何值时,y0?当时我们又是怎样解决的呢?

    当时我们是通过作出函数的图象,找出图象与x轴的交点,通过观察来解决的.

    二次函数y=x2-5x的对应值表与图象如下:

    x

    -1

    0

    1

    2

    3

    4

    5

    6

    y

    6

    0

    -4

    -6

    -6

    -4

    0

    6

    由对应值表与图象(如上图)可知:

    x=0x=5时,y=0,即x2-5x=0;

    0x5时,y0,即x2-5x0;

    x0x5时,y0,即x2-5x0.

    这就是说,若抛物线y=x 2-5xx轴的交点是(00)(50),

    则一元二次方程x2-5x=0的解就是x1=0x2=5.

    一元二次不等式x2-5x0的解集是{x|0x5};一元二次不等式x2-5x0的解集是{x|x0x5}.

    [教师精讲]

    由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为ax2+bx+c0ax2+bx+c0a0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.

    如何讨论一元二次不等式的解集呢?

    我们知道,对于一元二次方程ax2+bx+c=0(a0),设其判别式为Δ=b2-4ac,它的解按照Δ0,Δ=0Δ0分为三种情况,相应地,抛物线y=ax2+bx+c(a0)x轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式ax2+bx+c0ax2+bx+c0a0)的解集我们也分这三种情况进行讨论.

    1)若Δ0,此时抛物线y=ax 2+bx+c(a0)x轴有两个交点〔图(1)〕,即方程ax 2+bx+c=0(a0)有两个不相等的实根x1x2x1x2,则不等式ax2+bx+c0a0)的解集是{x|xx1,或xx2};不等式ax2+bx+c0a0)的解集是{x|x1xx2}.

    2)若Δ=0,此时抛物线y=ax2+bx+c(a0)x轴只有一个交点〔图(2)〕,即方程ax2+bx+c=0(a0)有两个相等的实根x1=x2=,则不等式ax2+bx+c0a0)的解集是{x|x≠};不等式ax2+bx+c0a0)的解集是.

    (3)Δ0,此时抛物线y=ax2+bx+c(a0)x轴没有交点〔图(3)〕,即方程ax2+bx+c=0(a0)无实根,则不等式ax2+bx+c0a0)的解集是R;不等式ax2+bx+c0a0)的解集是.

    Δ=b2-4ac

    Δ0

    Δ=0

    Δ0

    二次函数y=ax2+bx+c(a0)的图象

    ax2+bx+c=0的根

    x1=x2=

    ax2+bx+c0的解集

    {x|xx1xx2}

    {x|x≠}

    R

    ax2+bx+c0的解集

    {x|x1xx2}

    对于二次项系数是负数(即a0)的不等式,可以先把二次项系数化成正数,再求解.

    [知识拓展]

    【例1 解不等式2x 2-5x-30.

    解:因为Δ02x2-5x-3=0的解是x1=-,x 2=3.所以不等式的解集是{x|x,或x3}.

    【例2 解不等式-3x 2+15x12.

    解:整理化简得3x 2-15x+120.因为Δ0,方程3x2-15x+12=0的解是x 1=1,x2=4,所以不等式的解集是{x|1x4}.

    【例3 解不等式4x 2+4x+10.

    解:因为Δ=0,方程4x 2+4x+1=0的解是x1=x 2=.所以不等式的解集是{x|x≠}.

    【例4 解不等式-x 2+2x-30.

    解:整理化简,得x2-2x+30.因为Δ0,方程x 2-2x+3=0无实数解,所以不等式的解集是.

    由上述讨论及例题,可归纳出解一元二次不等式的程序吗?

    归纳如下:

    1)将二次项系数化为“+”y=ax 2+bx+c0(或<0)(a0).

    2)计算判别式Δ,分析不等式的解的情况:

    Δ0时,求根x1x2

    Δ=0时,求根x 1=x 2=x 0

    Δ0时,方程无解,

    3)写出解集.

    说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整.

    [学生活动过程]

    [方法引导]

    上述过程以学生自主探究为主,教起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神.

    课堂小结

    1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是ax2+bx+c0ax2+bx+c0a≠0.

    2.求解一元二次不等式的步骤和解一元二次不等式的程序.

    布置作业

    1.完成第90页的练习.

    2.完成第90页习题3.21.

    板书设计

    一元二次不等式的概念和一元二次不等式解法

    多媒体演示区                 一元二次不等式概念

    一元二次不等式解题步骤               例题

     

    相关教案

    2020-2021学年1.1 空间几何体的结构教学设计及反思: 这是一份2020-2021学年1.1 空间几何体的结构教学设计及反思,共5页。

    人教版新课标A必修33.2.1古典概型教案设计: 这是一份人教版新课标A必修33.2.1古典概型教案设计,共4页。教案主要包含了导入新课,新课讲解,例题讲解,课堂练习,课堂小结,课后作业等内容,欢迎下载使用。

    高中数学人教版新课标A必修33.1.2概率的意义教案: 这是一份高中数学人教版新课标A必修33.1.2概率的意义教案,共3页。教案主要包含了导入新课,新课讲解,例题讲解,课堂练习,课堂小结,课后作业等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map