高中第三章 不等式3.3 二元一次不等式(组)与简单的线性教案设计
展开这是一份高中第三章 不等式3.3 二元一次不等式(组)与简单的线性教案设计,共3页。教案主要包含了学习目标,学习重点,学习难点,授课类型,学习方法,学习过程等内容,欢迎下载使用。
高二数学 教·学案 | |||
课题:3.3.2简单的线性规划问题(3) | 主备人: | 执教者: | |
【学习目标】 1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【学习重点】用图解法求线性目标函数的最值问题。 【学习难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。 【授课类型】新授课 【学习方法】合作探究 | |||
【学习过程】 1.课题导入 [复习引入]: 1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线) 2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解: 3、用图解法解决简单的线性规划问题的基本步骤: 2.讲授新课 1.线性规划在实际中的应用: 例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
2.课本第91页的“阅读与思考”——错在哪里? 若实数,满足 求4+2的取值范围. 错解:由①、②同向相加可求得: 0≤2≤4 即 0≤4≤8 ③ 由②得 —1≤—≤1 将上式与①同向相加得0≤2≤4 ④ ③十④得 0≤4十2≤12 以上解法正确吗?为什么? (1)[质疑]引导学生阅读、讨论、分析. (2)[辨析]通过讨论,上述解法中,确定的0≤4≤8及0≤2≤4是对的,但用的最大(小)值及的最大(小)值来确定4十2的最大(小)值却是不合理的.X取得最大(小)值时,y并不能同时取得最大(小)值。由于忽略了x和 y 的相互制约关系,故这种解法不正确. (3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解? 正解: 因为 4x+2y=3(x+y)+(x-y) 且由已有条件有: (5) (6) 将(5)(6)两式相加得 所以 3.随堂练习1 1、求的最大值、最小值,使、满足条件 2、设,式中变量、满足
4.课时小结 [结论一]线性目标函数的最大值、最小值一般在可行域的顶点处取得. [结论二]线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.
5.作业 同步学案3.3.2(3) | 个性设计
| ||
课后反思:
相关教案
这是一份数学人教版新课标A3.3 二元一次不等式(组)与简单的线性教案,共2页。教案主要包含了学习目标,学习重点,学习难点,授课类型,学习方法,学习过程等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修53.3 二元一次不等式(组)与简单的线性教案及反思,共4页。教案主要包含了学习目标,学习重点,学习难点,授课类型,学习方法,学习过程等内容,欢迎下载使用。
这是一份人教版新课标A必修5第三章 不等式3.4 基本不等式教案,共5页。教案主要包含了学习目标,学习重点,学习难点,授课类型,学习方法,学习过程等内容,欢迎下载使用。

