人教版新课标A必修53.2 一元二次不等式及其解法学案
展开
这是一份人教版新课标A必修53.2 一元二次不等式及其解法学案,共5页。
课题:3.2一元二次不等式及其解法 (1)班级: 组名: 姓名: 设计人:赵帅军 审核人:魏帅举 领导审批: 一.:自主学习,明确目标 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 教学重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。教学难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。教学方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 二.研讨互动,问题生成从实际情境中抽象出一元二次不等式模型:互联网的收费问题一元二次不等式模型:1)一元二次不等式的定义象这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:二次函数有两个零点:于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数的图象,如图,观察函数图象,可知:当 x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即;当0<x<5时,函数图象位于x轴下方,此时,y<0,即;所以,不等式的解集是,从而解决了本节开始时提出的问题。3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式: 一般地,怎样确定一元二次不等式>0与<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线与x轴的相关位置的情况,也就是一元二次方程=0的根的情况(2)抛物线的开口方向,也就是a的符号 设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 二次函数()的图象 一元二次方程有两相异实根有两相等实根 无实根 R 三.合作探究,问题解决例1 求不等式的解集. 例2 解不等式. 课时小结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=>0(或<0)(a>0)② 计算判别式,分析不等式的解的情况:ⅰ.>0时,求根<,ⅱ.=0时,求根==,ⅲ.<0时,方程无解,③ 写出解集.5.评价设计课本第80页习题3.2[A]组第1题自我评价 同伴评价 小组长评价:
相关学案
这是一份高中数学人教版新课标A必修53.4 基本不等式学案,共4页。
这是一份高中数学人教版新课标A必修52.4 等比数列导学案,共5页。学案主要包含了学习目标,研讨互动 问题生成,合作探究 问题解决,点睛师例 巩固提高,要点归纳 反思总结,多元评价,课后训练等内容,欢迎下载使用。
这是一份人教版新课标A必修52.2 等差数列学案设计,共4页。学案主要包含了学习目标,研讨互动 问题生成,合作探究 问题解决,点睛师例 巩固提高,要点归纳 反思总结,多元评价,课后训练等内容,欢迎下载使用。