高中数学人教版新课标A选修2-12.4抛物线教案
展开下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.
(二)几何性质
怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.
例题的讲解与引申
例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式设P(x0,
这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.
(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1, y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p
例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.
附 教学教案
高中数学人教版新课标A选修2-12.4抛物线教案: 这是一份高中数学人教版新课标A选修2-12.4抛物线教案,
高中数学人教版新课标A选修2-12.4抛物线教学设计及反思: 这是一份高中数学人教版新课标A选修2-12.4抛物线教学设计及反思,
人教版新课标A选修2-12.1曲线与方程教案设计: 这是一份人教版新课标A选修2-12.1曲线与方程教案设计,共2页。