苏教版必修13.1.2 指数函数教案及反思
展开第十九课时 指数函数(4)
【学习导航】
学习要求:
1、巩固指数函数的图象及其性质;
2、掌握由指数函数和其他简单函数组成的复合函数性质;
【精典范例】
一、 复合函数的定义域与值域
例1、求下列函数的定义域与值域。
(1)y=;
(2)y=;
(3)y=
思维分析:y=a的定义域是f(x)的定义域;对于值域,要先求出f(x) 值域再利用指数函数单调性求解。
二、利用复合函数单调性来解题
例2、求函数y=的单调区间。
点评:y=a的单调性由a和u=f(x)两函数在相应区间上单调性确定的,遵循“同增异减”法则。
三、利用图象的性质比较大小
例3、已知函数f(x)=ax(a>0,且a≠1),根据图象判断[f(x1)+f(x2)]与f()的大小,并加以证明。
四、分类讨论思想在解题中的应用
例4、已知f(x)=(ex-a)+ (e-x-a)(a0)。
(1) f(x)将表示成u= 的函数;
(2) 求f(x)的最小值
思维分析:平方展开重新配方,就可以得到所求函数的形式;然后根据二次函数的知识确定最值。
点评:这是复合函数求最值问题,为了求得最值,通过换元转化为二次函数,再由二次函数在区间上的单调性确定最值。
追踪训练
1、求下列函数定义域和值域.
(1)y=;
(2)y=
2、求函数y=的单调区间.
3、已知f(x)=(a>0且a)
(1)求f(x)的定义域和值域;
(2)判断f(x)与的关系;
(3)讨论f(x)的单调性;
,
4、已知g(x)=()x(x>0),而f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=g(x),则f(x)的解析式为_ ___________.
5、设a是实数,f(x)=.
(1)证明:不论a为何实数,f(x)均为增函数;
(2)试确定a的值,使f(x)为奇函数成立。
【师生互动】
学生质疑 |
|
教师释疑 |
|
高中苏教版3.2.2 对数函数教案设计: 这是一份高中苏教版3.2.2 对数函数教案设计,共2页。教案主要包含了学习导航,精典范例等内容,欢迎下载使用。
苏教版必修13.1.2 指数函数教学设计: 这是一份苏教版必修13.1.2 指数函数教学设计,共4页。教案主要包含了学习导航,精典范例,选修延伸等内容,欢迎下载使用。
苏教版必修13.1.2 指数函数教案设计: 这是一份苏教版必修13.1.2 指数函数教案设计,共4页。教案主要包含了学习导航,精典范例,师生互动等内容,欢迎下载使用。