终身会员
搜索
    上传资料 赚现金

    2013-2014学年高中数学同步课堂活页训练:第一章 三角函数1.3.2.4 (苏教版必修4) Word版含解析

    立即下载
    加入资料篮
    2013-2014学年高中数学同步课堂活页训练:第一章 三角函数1.3.2.4 (苏教版必修4) Word版含解析第1页
    2013-2014学年高中数学同步课堂活页训练:第一章 三角函数1.3.2.4 (苏教版必修4) Word版含解析第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2013-2014学年高中数学同步课堂活页训练:第一章 三角函数1.3.2.4 (苏教版必修4) Word版含解析

    展开

    1.函数ytan的定义域为__________________________________答案 2.比较tantan的大小_______________________________________解析 tantantan又函数ytan x上是增函数,而-<<<tan<tan.答案 tan <tan3.函数y5tan(2x1)的最小正周期为________答案 4.函数y的值域是________解析 因为-x,又因为ytan xx时为增函数,所以-1tan x1.x0,所以-1tan x<00<tan x1,因而易求得(,-1][1,+)答案 (,-1][1,+]5.下列四个命题:函数ytan x在定义域内是增函数;函数ytan(2x1)的最小正周期是π函数ytan x的图象关于点0)成中心对称;函数ytan x的图象关于点成中心对称.其中正确命题的序号为________解析 错,ytan xkZ上是增函数;T③④正确,因为ytan x的对称中心为.答案 ③④6.判断下列函数的奇偶性:(1)f(x)(2)ylg .解 (1)要使f(x)有意义,1cos x0xkπx(2k1)πxkπ (kZ)故函数的定义域关于原点对称.f(x)=-=-f(x)f(x)是奇函数.(2)0,得tan x1tan x<-1.故函数的定义域为 (kZ),定义域关于原点对称.f(x)f(x)lglglg0,即f(x)=-f(x)f(x)为奇函数.7.若函数f(x)tan ,则f(1)f(0)f(1)按从小到大的顺序是________解析 f(1)tanf(1)tantantan又-<1<1<<tan x上递增.f(1)<f(1)<f(0)答案 f(1)<f(1)<f(0)8.函数f(x)tan ωx(ω>0)的图象上的相邻两支曲线截直线y1所得线段长为,则f的值是________解析 由题意知Tω4ftan 4×tan.答案 9.函数ylg的定义域为________解析 由题意得由正切函数图象得不等式-<tan x<1的解为kπ<x<kπ(kZ)故所求的定义域为.答案 10.函数ytan xsin x|tan xsin x|在区间内的图象是________(只填相应序号)解析 <x时,tan x<0<sin xy2tan x<0;当xπ时,y0,当π<x<时,tan x>0>sin xy2sin x.答案 11.求函数ytan 的定义域、值域,并指出它的周期性、奇偶性、单调性.解 3xkπ,得x所求定义域为.值域为R,周期T,是非奇非偶函数.在区间(kZ) 上是增函数.12.比较tan 1tan 2tan 3tan 4的大小.解 由正切函数的周期性可知,tan 4tan(4π)tan 3tan(3π)tan 2tan(2π)0<4π<1<,-<2π<3<π<0.0<tan(4π)<tan 1tan (2π)<tan(3π)<0tan(2π)<tan(3π)<0<tan(4π)<tan 1.tan 2<tan 3<tan 4<tan 1.13(创新拓展)作出下列函数的图象,并指出其周期,奇偶性及单调区间.(1)ytan|x|(2)y|tan x|.解 (1)ytan|x|x0时,函数ytan|x|y轴右侧的图象即为ytan x的图象不变;当x<0时,ytan|x|y轴左侧的图象为ytan xy轴右侧的图象关于y轴对称的图象.如下图所示.由图象知:函数ytan|x|是非周期函数,是偶函数.单调增区间为:(k0,1,2)单调减区间为:(k0,-1,-2)(2)y|tan x|类似(1)可作出其图象,如下图所示.由图象知:Tπ,是偶函数.单调递增区间:(kZ) 单调递减区间:(kZ). 

    • 精品推荐
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map