浙教版八年级下册5.2 菱形教案
展开1.经历菱形的概念、性质的发现过程
2.掌握菱形的概念
3.掌握菱形的性质定理 “菱形的四条边都相等”
4.掌握菱形的性质定理 “菱形的对角线互相垂直,并且每条对角线平分一组对角”
5.探索菱形的对称性
【教学重点、难点】
重点:菱形的性质.
难点:菱形的轴对称需要用折叠和推理相结合的方法,是本节的教学难点.
【教学过程】
引入: 用多媒体显示下面的图形
观察以下由火柴棒摆成的图形
议一议: (1)三个图形都是平行四边形吗?
(2) 与图一相比,图二与图三有什么共同的特点?
目的是让学生经历菱形的概念,性质的发现过程,并让学生注意以下几点:
要使学生明确图二、图三都为平行四边形
引导学生找出图二、图三与图一在边方面的差异
二. 新课: 把一组邻边相等的平行四边形叫做菱形.
再用多媒体教科书中有关菱形的美丽图案,让学生感受菱形具有工整,匀称,美观等许多优点.
菱形也是特殊的平行四边形,所以它具有一般平行四边形的性质外还具有一些特殊的性质.
定理1:菱形的四条边都相等
这个定理要求学生自己完成证明,可以根据菱形的定义推出,课堂上只需让学生说说理由就可以了,不必写证明过程.
定理2: 菱形的对角线互相垂直,并且每条对角线平分一组对角.
已知:在菱形ABCD中,对角线AC、BD相交于点O。
O
D
C
B
A
求证:AC ⊥
BD ,AC平分∠
BAD 和∠
BCD ,BD平分∠
ABC和∠
ADC
分析:由菱形的定义得△ABD是什么三角形?
BO与OD有什么关系?根据什么?
由此可得AO与BD有何关系?∠BAD有何关系?根据什么?
证明:∵四边形ABCD是菱形
∴AB=AD(菱形的定义)
BO=OD(平行四边形的对角线互相平分)
∴AC⊥BD , AC 平分∠BAD(等腰三角形三线合一的性质)
同理,AC平分∠
BCD ,BD平分∠
ABC和∠
ADC
∴对角线AC和BD分别平分一组对角
由定理2可以得出菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴。另外,还可以从折叠来说明轴对称性。同时指出以上两个性质只是菱形不同于一般平行四边形的特殊性质。菱形还具有平行四边形的所有共性,比如:菱形是中心对称图形,对称中心为两条对角线的交点。
三. 应用
在菱形ABCD中,对角线AC、BD相交与点O, ∠BAC= 30°,BD=6
求菱形的边长和对角线AC的长.
分析:本题是菱形的性质定理2的应用,由∠BAC= 30°,
得出△ABD为等边三角形,就抓住了问题解决的关
键。
解:∵四边形ABCD是菱形
O
D
C
B
A
∴AB=AD(菱形的定义)
AC 平分∠BAD(菱形的每条对角线平分一组对角)
又∵∠BAC= 30°
∴ ∠BAD= 60°
∴△ABD为等边三角形
∴AB=BD=6
又∵OB=OD=3(平行四边形的对角线互相平分)
AC⊥BD(菱形的对角线互相垂直)
由勾股定理得 AO2 + BO2= AB2
∴AO= AC=2AO=
四.巩固:
五.小结:1、通过本节课的学习,你有什么收获?还有哪些困惑?
2、本节课的主要内容是:一个定义(菱形的定义),二条定理(菱形的性质定理),二个结论(菱形是轴对称图形,又是中心对称图形)。
六.作业:(略)
初中数学22.5 菱形教案: 这是一份初中数学22.5 菱形教案,共6页。教案主要包含了教学目标,教学重点、难点,教学过程,教学方法等内容,欢迎下载使用。
初中数学冀教版八年级下册22.5 菱形教学设计: 这是一份初中数学冀教版八年级下册22.5 菱形教学设计,共6页。教案主要包含了教学目标,教学重点、难点,教学过程,教学方法等内容,欢迎下载使用。
初中数学浙教版八年级下册4.1 多边形教学设计: 这是一份初中数学浙教版八年级下册4.1 多边形教学设计,共6页。教案主要包含了创设情境,导入新课,合作交流,探究新知,应用新知,体验成功,掌握思维方法,例题讲解等内容,欢迎下载使用。