|教案下载
搜索
    上传资料 赚现金
    浙教初中数学八上《2.7探索勾股定理》word教案 (1)
    立即下载
    加入资料篮
    浙教初中数学八上《2.7探索勾股定理》word教案 (1)01
    浙教初中数学八上《2.7探索勾股定理》word教案 (1)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙教版八年级上册2.7 探索勾股定理教案

    展开
    这是一份浙教版八年级上册2.7 探索勾股定理教案,共5页。教案主要包含了设计说明等内容,欢迎下载使用。

    教学目标
    1体验勾股定理的探索过程,掌握勾股定理;
    2 会用勾股定理解决简单的几何问题;
    3 让学生经历动手操作实验观察、归纳、猜想、验证发现勾股定理的过程,培养学生探究能力,发展学生数形结合的数学思想方法。
    4 通过引导学生动手操作、观察发现、大胆猜想、自主探究、合作交流,激发学生的探究欲,使学生获得成功的体验,增强自信心,提高学习数学的兴趣;培养学生的爱国主义精神。
    教学重点
    勾股定理
    教学难点
    勾股定理的证明
    设计亮点
    突出学生的动手操作能力
    教学过程
    备 注
    创设情境 导入新课
    利用《九章算术》中的古题:“在《九章算术》中记载了一道有趣的数学题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这道题的意思是说:有一个边长为1丈的正方形水池,在池的中央长着一根芦苇,芦苇露出水面1尺。若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?”导入新课。
    【设计说明】此题虽为古代数学题,但却是学生生活中常见的问题。提出问题,但并不急于解决,意在激发学生的求知欲望。
    动手探索 发现定理
    (1)在方格纸上(方格边长为1cm),作三个直角三角形,使其顶点在格点上且两条直角边长分别为3cm和4cm,6cm 和8cm ,5cm 和12cm;
    (2)分别测量这三个直角三角形斜边的长;
    (3)根据所测得的结果填写课本P38页的表格。
    (4)观察表中后两列的数据。猜想在直角三角形中,三边长之间有什么关系?
    得出猜想后提出:
    (5)再任意画一个直角三角形试一试。
    得出:有必要来验证一下所得猜想的正确性。
    【设计说明】通过已知具体边长的直角三角形的画图、测量、计算、比较,得出猜想,意在锻炼学生的归纳、概括能力。继而通过画边长任意的直角三角形检验猜想,目的是为了激发学生的质疑能力和探究欲望,培养学生的探索能力。形成“通过特例实验得出猜想,但结论的准确性和普遍适用性,必须经过理论验证”的探究新领域的科学研究思想方法。
    操作活动 验证定理
    (1)小组合作活动
    拼图游戏:请每一小组拿出四个全等的直角三角形纸片:假设三角形的两直角边分别为a、b,斜边为c。你们能用这四个三角形纸片,围出一个正方形吗?
    【设计说明】此处对教材进行了处理,没有给出教材P39的图2-21。设计意图是希望学生的思维不受给定图形的影响,完全处于开放状态。以培养学生积极动手、大胆尝试、勇于挑战的精神和创新能力。并通过实际操作感知三角形面积与所围出的正方形面积的关系,为下一步理论验证打好伏笔。
    (2)探求所拼图形的面积关系,启发学生验证所得猜想。
    【设计说明】用面积法来证明勾股定理有一定的难度,但这种思维方式在平方差和完全平方公式的证明中已初步接触过,教师可以引导学生回顾这种方式,启发学生观察所拼图形中哪几部分的面积易计算,并寻找相互之间有何关系。通过小组合作,形成验证思路。
    (3)学生自主归纳定理,教师介绍勾股定理的历史。
    【设计说明】让学生了解勾股定理的中外史,激发学生的爱国主义情怀。
    4、应用定理 解决问题
    例1、已知在△ABC中,∠C=Rt∠,BC=a,AC=b,AB=C
    (1)若a=1, b=2,求c;
    (2)若a=15, c=17,求b;
    强调:(1)公式中字母的意义;(2)解题格式;(3)平方差公式的应用。
    巩固练习:课内练习1
    【设计说明】通过简单的计算,直接巩固勾股定理的有关内容。
    A
    B
    40
    90
    160
    40
    例2、 如图:是一个长方形零件图,根据所给的尺寸,求两孔中心A、B之间的距离。
    巩固练习:解决情境问题
    【设计说明】意在让学生学会利用勾股定理解决实际问题,并渗透方程思想,明白利用勾股定理结合方程思想是解决代数问题的常用手段。
    (1)
    a
    b
    c
    4个
    a
    c
    b
    b
    a
    c
    c
    c
    c
    b
    a
    a-b
    a-b
    a
    b
    c
    4个
    (2)
    例3、利用作直角三角形,在数轴上表示点 。
    巩固练习:课内练习2
    【设计说明】例3是教材中的课内练习3,是勾股定理的几何应用,但难度较大,学生较难形成思路。教师需要作些启发和解题示范,但仍以学生为主采用提问式启发,帮助学生形成解题思路。
    5、归纳小结 反馈信息学生谈体会;(2)教师小结
    【设计说明】引导学生小结本节重要的知识和思想方法,让学生谈谈自己的感受,增强学生自信心,发挥课堂自我评价的作用。
    6、布置作业 巩固提高
    书面作业:(1)必做:教材作业题A组
    (2)选做:教材作业题B、C组
    实践作业:收集日常生活中可用勾股定理来解决的实际问题,并以数学日记的形式进行收藏。
    【设计说明】分层布置作业可以因材施教,让水平不同的学生得到不同的发展。实践作业的布置,意在鼓励学生自己主动在现实中寻找用数学知识和数学思想方法解决问题的机会,并努力去完成,以激发学生课外学习的兴趣。
    板书设计:
    作业安排:
    教学反思:
    上课日期
    总课时
    教学目标
    1 掌握勾股定理的逆定理的内容及应用.
    2 会应用勾股定理的逆定理来判断直角三角形.
    3 了解我国古代数学家的伟大成就,激发学生热爱祖国的思想和求知欲.
    4 通过研究讨论培养学生的逻辑思维能力.
    教学重点
    勾股定理的逆定理是教学的重点
    教学难点
    教学的难点是根据勾股定理的逆定理判断已知三边的三角形是否为直角三角形
    设计亮点
    教学过程
    备 注
    一 复习回顾,导入新课
    首先回顾上节课内容:勾股定理。
    勾股定理体现了直角三角形的三边关系:直角三角形中两条直角边的平方和等于斜边的平方。这里老师有一个感兴趣的问题有待于解决,不知大家有没有想过:把这个定理反过来说:如果一个三角形有两边平方和等于第三边的平方,这个三角形一定是直角三角形吗?
    二 大家一起来分组做个实验,第一组的同学在本子上画一个边长为3cm,4cm,5cm的三角形,第二组的同学每人画一个边长为5cm,12cm,13cm的三角形,第三组的同学每人画一个边长为8cm,15cm,17cm的三角形,第四组的同学拿着三角板或量角器分别到一,二,三组来抽查,看看他们画出的三角形大概是什么形状呢?能不能得出一个公认的结论呢?
    实验讨论,新课教学
    通过实验大家得出结论了吗?(当第四组的同学量时,其他同学也看到了并得出自己的结论)现在大家讨论半分钟,每组派一个代表说出你们的结论,看看结论一致吗?哪一组概括得更准确?
    勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
    结论的应用:
    知道这个结论有什么作用吗?(有些同学是知道的)显然如果给出一个三角形的三边长,我们可通过计算两边的平方和,第三边的平方,通过判断他们是否相等来看这个三角形是不是直角三角形。
    如 以6,8,10为三边的三角形是直角三角形吗?
    分析:我们先用中的哪一个与第三边的平方比较呢?有的同学已经想好了,总是用较短的两边的平方和,与最长的那个边的平方比较。我们来试几道题
    2 例3讲解,教师板演第(1)题,学生独立完成第(2)题;
    练习:完成课内练习第1题。
    例4 分析讲解
    已知的三边分别为a,b,c且a=,b=2mn,c=(m>n,m,n是正整数),是直角三角形吗?说明理由。
    分析:先来判断a,b,c三边哪条最长,可以代m、n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。
    解:
    是直角三角形
    注意事项:书写时千万别写成是直角三角形。这里你弄错了勾股定理的逆定理的条件和结论。分清何时利用勾股定理,何时利用其逆定理
    巩固练习:课内练习2
    (三)课堂小结:
    勾股定理逆定理。
    勾股定理逆定理的作用:利用三边关系判断三角形形状。
    通过以上学习要有意识培养自己的逻辑思维能力。
    (四)作业:
    教科书44页1题:(2),(5);2题;3题;4题。
    (五)补充练习:
    A
    B
    C
    a
    b
    c
    S1
    S2
    S3
    A
    C
    a
    b
    c
    S1
    S2
    S3
    B
    A
    B
    C
    a
    b
    c
    S1
    S2
    S3
    如下图中分别以三边a,b,c为边向外作正方形,正三角形,为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?
    相关教案

    初中浙教版3.1 圆教学设计: 这是一份初中浙教版3.1 圆教学设计,共4页。教案主要包含了创设情境,引入新课,合作交流,探究新知,例题解析,当堂练习等内容,欢迎下载使用。

    数学八年级上册1.3 证明教案设计: 这是一份数学八年级上册1.3 证明教案设计,共2页。教案主要包含了画出命题的图形,结合图形写出已知等内容,欢迎下载使用。

    初中浙教版5.2 函数教学设计: 这是一份初中浙教版5.2 函数教学设计,共2页。教案主要包含了合作学习,函数的概念,函数的三种表示方法,知识整理,布置作业等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map