初中数学浙教版七年级上册第5章 一元一次方程5.4 一元一次方程的应用教案
展开一元一次方程的应用
教学目标
一、 教学重点和难点
二、 教学过程
我国体育健儿在举世瞩目的第28届奥运会上不畏强手,奋力拼搏,实现了我国竞技体育在奥运会上新的历史性突破,获得了32枚金牌,比1988年奥运会我国获得的金牌数的6倍多2枚,1988年奥运会我国获得几枚金牌?
用算术方法:=5(枚).
用列方程的方法:
设1988年获得x枚金牌,根据题意,得
6x+2=32.
解这个方程,得x =5(枚).
对于这样的应用题,用直接列算式方法解,或用列方程方法解都比较方便.算术方法是根据已知量的数量关系,用逆向思维的方法,列出综合算式直接求未知量.列方程的方法是通过用字母表示未知量,并把这个未知量当作已知量,找出与题中的其他已知量形成的相等关系列出方程求解.
合作学习
2004年与1988年奥运会我国共获91枚奖牌,其中2004年比1998年的2倍多7枚,问1998年我国获得几枚奖牌?
请讨论和解答下面的问题:
(1) 能直接列出算式求1998年奥运会我国获得的奖牌数吗?
(2) 如果用列方程的方法求解,设哪个未知数为x?
(3) 根据怎样的相等来列方程?方程的解是多少?
用算术方法:=28.
说明:若学生不能说出“2+1”,教师引导从“91-7”这个数据上分析金牌数是属于哪几届的.
用列方程的方法:
设1988年获得x枚金牌,根据题意,得
x +2 x+7=91.
解这个方程,得x =28(枚).
当数量关系比较复杂时,列方程解应用题要比直接列算式解容易.
适当地运用一元一次方程的知识,可以解决许多现实生活中遇到的有关实际问题[板书5.3一元一次方程的应用].
例1 5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?
分析 题中哪些量是已知的?哪些量是未知的?这些量之间有什么关系?能用表格去表示吗?设哪个未知数为?题中的相等关系是什么?
| 人数 | 票价 | 总票价 |
教师 | 5 | 7 | |
学生 | |||
相等关系 | |||
解 设学生有人,根据题意,得
.
解这个方程,得.
检验:适合方程,且符合题意.
答:学生有49人.
从上面的例子我们可以看到,运用方程解决实际问题的一般过程是:
- 审题:分析题意,找出题中的数量关系及其关系;
- 设元:选择一个适当的未知数用字母表示(例如x);
- 列方程:根据相等关系列出方程;
- 解方程:求出未知数的值;
- 检验:检验求得的值是否正确和符合实际情形,并写出答案.
练习 甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?
分析 什么叫相向而行、同向而行?路程、时间与速度之间有怎样的数量关系?.A,B两地间路程是哪几段路程之和?
自行车所走的路程+摩托车所走的路程=180千米.方程能列出来吗?
变题一 相遇后经过多少时间乙到达A地?
变题二 如果甲先行1时后乙才出发,问甲再行多少时间与乙相遇?
例2 甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?
变题 相遇后经过多少时间甲到达B地?
设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:
| 相遇前 | 相遇后 | ||||
速度 | 时间 | 路程 | 速度 | 时间 | 路程 | |
甲 | 3 | 3 | 3+90 | |||
乙 | 3 | 3+90 | 1 | 3 | ||
相遇前甲行驶的路程+90=相遇前乙行驶的路程;
相遇后乙行驶的路程=相遇前甲行驶的路程.
解 设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得.
解这个方程,得=15.
检验:=15适合方程,且符合题意.
将=15代入,得==45.
答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.
想一想 如果设乙行驶的速度为千米/时,你能列出有关的方程并解答吗?
在分析应用题中的数量关系时,常用列表分析法与线段图示法,使题目中的条件和结论变得直观明显,因而容易找到它们之间的相等关系.
初中数学冀教版七年级上册5.4 一元一次方程的应用教学设计及反思: 这是一份初中数学冀教版七年级上册5.4 一元一次方程的应用教学设计及反思,共3页。
初中数学浙教版七年级上册5.4 一元一次方程的应用教案: 这是一份初中数学浙教版七年级上册5.4 一元一次方程的应用教案,共2页。教案主要包含了教学目标,重点,教学准备,教学设计,归纳小结,布置作业,教学反思等内容,欢迎下载使用。
初中数学浙教版七年级上册5.4 一元一次方程的应用教学设计: 这是一份初中数学浙教版七年级上册5.4 一元一次方程的应用教学设计,共2页。

