![第8套人教初中数学七下 5.3.2 命题、定理、证明教案第1页](http://img-preview.51jiaoxi.com/2/3/12424525/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学5.3.2 命题、定理、证明教学设计
展开
这是一份数学5.3.2 命题、定理、证明教学设计,共3页。
5.3.2 命题、定理、证明教学目标1.知识目标:掌握命题的概念,并能分清命题的组成部分.经历判断命题真假的过程,对命题的真假有一个初步的了解。2.能力目标:初步培养不同几何语言相互转化的能力。3.情感目标:教学重点命题的概念和区分命题的题设与结论教学难点区分命题的题设和结论教学方法自主学习,合作探究教学器材多媒体课前预习设计1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断 教学过程一.旧知设疑 、情景引入(时间:3 分钟)二次备课1、预习疑难: 。2、填空:①平行线的3个判定方法的共同点是 。②平行线的判定和性质的区别是 。 二.新课教学(时间:25分钟)教师导知活动1学生探知活动1二次备课定义: 的语句,叫做命题 练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行. 请你再举出一些例子。 教师导知活动2学生探知活动2二次备课命题的构成:1、许多命题都由 和 两部分组成. 是已知事项, 是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是 ,"那么"后接的的部分是 .(三)命题的分类 真命题: 。 (定理: 的真命题。) 假命题: 。 1、指出下列命题的题设和结论: (1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°2、把下列命题改写成"如果……那么……"的形式:(1)互补的两个角不可能都是锐角: 。(2)垂直于同一条直线的两条直线平行: 。(3)对顶角相等: 。3、判断下列命题是否正确: (1)同位角相等(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角. 三.巩固练习,拓展提升(时间: 分钟)1、判断下列语句是不是命题(1)延长线段AB( )(2)两条直线相交,只有一交点( )(3)画线段AB的中点( )(4)若|x|=2,则x=2( )(5)角平分线是一条射线( )2、选择题(1)下列语句不是命题的是( ) A、两点之间,线段最短 B、不平行的两条直线有一个交点 C、x与y的和等于0吗? D、对顶角不相等。(2)下列命题中真命题是( ) A、两个锐角之和为钝角 B、两个锐角之和为锐角 C、钝角大于它的补角 D、锐角小于它的余角(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有( ) A、1个 B、2个 C、3个 D、4个3、分别指出下列各命题的题设和结论。(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。4、分别把下列命题写成“如果……,那么……”的形式。(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。四.课堂小结,知识再现(时间: 分钟)1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五.课外作业布置:5、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3(_________________);(2)∵∠1=∠3,∴a∥b(_________________);(3)∵a∥b,∴∠1=∠2(__________________);(4) ∵a∥b,∴∠1+∠4=180º (_____________________)(5)∵∠1=∠2,∴a∥b(__________________);1、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF证明:∵AB⊥BC,BC⊥CD(已知) ∴ = =90°( ) ∵∠1=∠2(已知) ∴ = (等式性质) ∴BE∥CF( ) 2、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。证明:∵AC⊥BC(已知) ∴∠ACB=90°( ) ∴∠BCD是∠ACD的余角 ∵∠BCD是∠B的余角(已知) ∴∠ACD=∠B( )3、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。证明:∵AB∥CD(已知) ∴∠4=∠ ( ) ∵∠3=∠4(已知) ∴∠3=∠ ( ) ∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF( ) 即∠ =∠ ∴∠3=∠ ( ) ∴AD∥BE( )六.教学反思:
相关教案
这是一份初中数学人教版七年级下册5.3.2 命题、定理、证明教学设计及反思,共7页。教案主要包含了课堂引入,应用举例,拓展提升,当堂训练,课后作业,板书设计,教学反思等内容,欢迎下载使用。
这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案设计,共8页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册5.3.2 命题、定理、证明教案,共5页。教案主要包含了知识与能力目标,过程与方法目标,情感态度价值观目标,教学重点,教学难点等内容,欢迎下载使用。