![第1套人教初中数学七下《5.3.2 命题、定理、证明》教案01](http://img-preview.51jiaoxi.com/2/3/12424306/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中人教版5.3.2 命题、定理、证明教学设计
展开《命题、定理、证明》
教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.
3.能够综合运用平行线性质和判定解题.
重点、难点
重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.
难点:平行线性质和判定灵活运用.
教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)
2.平行线的性质有哪些.
3.完成下面填空.
已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.
4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1
已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么?
学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:
(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?
(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.
(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?
让学生写出说理过程,师生共同评价三种不同的说理.
2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.
∠B | ∠F | ∠C | ∠B与∠F度数之和 |
图(1) |
|
|
|
图(2) |
|
|
|
通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.
(1) (2)
教师投影题目:
学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.
在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:
①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.
②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.
③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗?
以上分析后,学生先推理说明, 师生交流,教师给出说理过程.
作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).
所以∠F=∠FCD(两直线平行,内错角相等).
因为CD∥AB.
所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.
(2)教师投影课本P23探究的图(图5.3-4)及文字.
①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?
它们的长度相等吗?
②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.
③师生给两条平行线的距离下定义.
学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.
教师板书定义:
(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
④利用点到直线的距离来定义两条平行线的距离.
教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.
学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗?
这两个问题学生不难回答,教师归纳:
两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.
教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.
人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案设计: 这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案设计,共8页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
初中数学人教版七年级下册5.3.2 命题、定理、证明教案: 这是一份初中数学人教版七年级下册5.3.2 命题、定理、证明教案,共5页。教案主要包含了知识与能力目标,过程与方法目标,情感态度价值观目标,教学重点,教学难点等内容,欢迎下载使用。
初中数学人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案: 这是一份初中数学人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明教案,共7页。