初中数学人教版八年级上册12.1 全等三角形学案
展开【巩固练习】
一、选择题
1.下列命题中,真命题的个数是 ( )
①全等三角形的周长相等 ②全等三角形的对应角相等
③全等三角形的面积相等 ④面积相等的两个三角形全等
A.4个 B.3个 C.2个 D.1个
2. 如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAB:∠DAC=4:3,则∠EFC的度数为( )
A.30° B.40° C.70° D.80°
3.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )
A.3个 B.2个 C.1个 D.0个
4.△ABC≌△DEF,且△ABC的周长为100,A、B分别与D、E对应,且AB=35,DF=30,则EF的长为( )
A.35 B.30 C.45 D.55
5.如图,已知△ACE≌△DFB,下列结论中正确的个数是( )
①AC=DB;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.
6.如图,△ABE≌△ACD,AB=AC, BE=CD, ∠B=50°,∠AEC=120°,则∠DAC的度数为 ( )
A.120° B.70 ° C.60° D.50°
二、填空题
7. (如图,△ABC≌△ADE,BC的延长线交DE于点G,若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB= .
8. 如图,△ABC≌△ADE,如果AB=5,BC=7,AC=6,那么DE的长是________.
9. 如图,△ABC≌△ADE,则,AB= ,∠E =∠ ;若∠BAE=120°,∠BAD=40°,则∠BAC=___________.
10.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为 __________.
11. △ABC中,∠A∶∠C∶∠B=4∶3∶2,且△ABC≌△DEF,则∠DEF=______
12. 如图,AC、BD相交于点O,△AOB≌△COD,则AB与CD的位置关系是 .
三、解答题
13. 如图,△ABC中,∠ACB=90°,△ABC≌△DFC,你能判断DE与AB互相垂直吗?说出你的理由.
14.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.
15.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设的度数为,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有或的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
【答案与解析】
一.选择题
1. 【答案】 B;
【解析】①②③是正确的;
2. 【答案】C;
【解析】∵∠B=80°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵△ABC≌△ADE,
∴∠DAE=∠BAC=70°,∠E=∠C=30°.∵∠DAB:∠DAC=4:3,∴∠DAB=40°,∠DAC=30°,
∴∠EAC=∠DAE﹣∠DAC=70°﹣30°=40°,∴∠EFC=∠E+∠EAC=30°+40°=70°.
3. 【答案】C;
【解析】只有(3)是正确的命题;
4. 【答案】A;
【解析】AC=DF=30,EF=BC=100-35-30=35;
5. 【答案】C;
【解析】解:∵△ACE≌△DFB,
∴AC=DB,①正确;
∠ECA=∠DBF,∠A=∠D,S△ACE=S△DFB,⑤正确;
∵AB+BC=CD+BC,
∴AB=CD ②正确;
∵∠ECA=∠DBF,
∴BF∥EC,⑦正确;
∠1=∠2,③正确;
∵∠A=∠D,
∴AE∥DF,④正确.
BC与AE,不是对应边,也没有办法证明二者相等,⑥不正确.
故选C.
6. 【答案】B;
【解析】由全等三角形的性质,易得∠BAD=∠CAE=10°,∠BAC=80°,所以∠DAC=70°.
二.填空题
7. 【答案】70°;
【解析】∵∠B=24°,∠CAB=54°,∠DAC=16°,∴∠AFB=180°﹣(∠B+∠CAB+∠DAC)=86°,∴∠GFD=∠AFB=86°,∵△ABC≌△ADE,∠B=24°,∴∠D=∠B=24°,∴∠DGB=180°﹣∠D﹣∠DFG=70°.
8. 【答案】7;
【解析】BC与DE是对应边;
9.【答案】AD C 80°;
【解析】∠BAC=∠DAE=120°-40°=80°;
10.【答案】30°;
【解析】解:∵△ACB≌△A′CB′,
∴∠ACB=∠A′CB′,
∵∠BCB′=∠A′CB′﹣∠A′CB,
∴∠ACA′=∠ACB﹣∠A′CB,
∴∠ACA′=∠BCB′=30°.
故答案为:30°.
11.【答案】40°;
【解析】∠DEF=∠ABC=×180°=40°;
12.【答案】平行;
【解析】由全等三角形性质可知∠B=∠D,所以AB∥CD.
三.解答题
13.【解析】DE与AB互相垂直.
∵△ABC≌△DFC
∴∠A=∠D,∠B=∠CFD,
又∵∠ACB=90°
∴∠B+∠A=90°,而∠AFE=∠CFD
∴∠AFE+∠A=90°,即DE⊥AB.
14.【解析】
解:∵∠A=30°,∠B=50°,
∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,
∵△ABC≌△DEF,
∴∠DFE=∠ACB=100°,EF=BC,
∴EF﹣CF=BC﹣CF,即EC=BF,
∵BF=2,
∴EC=2.
15.【解析】
(1)△EAD≌△,其中∠EAD=∠,;
(2)∠1=180°-2,∠2=180°-2;
(3)规律为:∠1+∠2=2∠A.
初中数学人教版八年级上册第十二章 全等三角形12.1 全等三角形导学案及答案: 这是一份初中数学人教版八年级上册第十二章 全等三角形12.1 全等三角形导学案及答案,共9页。学案主要包含了答案与解析等内容,欢迎下载使用。
初中数学人教版八年级上册12.3 角的平分线的性质学案设计: 这是一份初中数学人教版八年级上册12.3 角的平分线的性质学案设计,共7页。学案主要包含了答案与解析等内容,欢迎下载使用。
初中数学人教版八年级上册12.1 全等三角形学案设计: 这是一份初中数学人教版八年级上册12.1 全等三角形学案设计,共6页。学案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。