初中数学25.2 用列举法求概率精品课后复习题
展开一、选择题
1.一枚质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的事件是( ).
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13
D.点数的和小于2
2.如图所示,一张圆桌旁有四个座位,A,B,C,D四人随机坐在四个座位上,那么A与D相邻的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.一个箱子内装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数字,第2张牌的号码为个位数字,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4.一个盒子内装有大小、形状相同的4个球,其中有1个红球、1个绿球、2个白球.小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.某电视节目中有一种竞猜游戏,游戏规则如下:
在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。参加这个游戏的观众有三次翻牌的机会。某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
7.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
9.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )
A. B. C. D.
10.从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
11.学校团委在“五四”青年节举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
12.如图所示,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
二、填空题
13.如图所示,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率是 .
14.如图,一只蚂蚁从点A出发到点D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或向右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从点A出发到达点E处的概率是 .
15.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为 SKIPIF 1 < 0
16.一个不透明的口袋中有6个完全相同的小球,现把它们分别标号为1,2,3,4,5,6,并从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .
17.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取一个球,摸到红球的概率是 SKIPIF 1 < 0 ,则这个袋子中有红球 个.
18.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是 .
三、解答题
19.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率.
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
20.如图所示,管中放置着三根同样的绳子AA1,BB1,CC1.
(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?
(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
21.家在上海的小明一家将于5月1-2日进行自驾游,准备两天分别在不同的城市游玩,5月1日的备选地点为:A南京、B杭州、C扬州,5月2日的备选地点为:D嘉兴、E苏州.
(1)请用树状图或列表法分析并写出小明一家所有可能的游玩方式(用字母表示即可).
(2)求小明一家恰好两天在同一省份游玩的概率.
22.如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表法加以分析说明.
23.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:
A.唐诗;B.宋词;C.论语;D.三字经.
比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
24.山西省实验中学欲向清华大学推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图1.
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:
图2是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图1和图2;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)
参考答案
1.答案为:C.
2.答案为:A.
3.答案为:A.
4.答案为:C.
5.答案为:B.
6.答案为:C.
7.答案为:B.
8.答案为:B.
9.答案为:C.
10.答案为:D.
11.答案为:A.
12.答案为:B.
13.答案为: SKIPIF 1 < 0 .
14.答案为: SKIPIF 1 < 0 .
15.答案为:.
16.答案为: SKIPIF 1 < 0 .
17.答案为:5.
18.答案为:.
19.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,
∴甲投放的垃圾恰好是A类的概率为 SKIPIF 1 < 0 .
(2)画树状图如下:
由图可知,共有18种等可能的结果,
其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,
∴P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)= SKIPIF 1 < 0 = SKIPIF 1 < 0 .
20.解:(1) SKIPIF 1 < 0
(2)列表如下:
所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,
∴P= SKIPIF 1 < 0 = SKIPIF 1 < 0 .
21.解:画树状图如下:
∴小明一家所有可能选择游玩的方式有:
(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).
(2)小明一家恰好在同一省份游玩的可能有(A,E),(B,D),(C,E)三种,
∴小明一家恰好在同一省份游玩的概率为 SKIPIF 1 < 0 = SKIPIF 1 < 0 .
22.解:可以用下表列举所有可能得到的牌面数字之和:
由上表可知,共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共出现4次,因此牌面数字之和等于5的概率为0.25.
23.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为 SKIPIF 1 < 0 .
(2)画树状图如下:
共有12种等可能的情况,其中恰好小红抽中“唐诗”且小明抽中“宋词”的有1种,
∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为 SKIPIF 1 < 0 .
24.解:(1)图1中乙的百分比30%;图2中,甲面试的成绩为85分,
如图,
(2)甲的票数是:68(票),
乙的票数是:60(票),
丙的票数是:56(票);
(3)甲的平均成绩:85.1(分),
乙的平均成绩:85.5(分),
丙的平均成绩:82.7(分),
∵乙的平均成绩最高,
应该录取乙.
(4)画树状图为:
共有6种等可能的结果数,其中甲和乙被选中的结果数为2,
所以甲和乙被选中的概率1/3.
方块
黑桃
1
2
3
4
1
1+1=2
2+1=3
3+1=4
4+1=5
2
1+2=3
2+2=4
3+2=5
4+2=6
3
1+3=4
2+3=5
3+3=6
4+3=7
4
1+4=5
2+4=6
3+4=7
4+4=8
人教版九年级上册25.2 用列举法求概率优秀同步训练题: 这是一份人教版九年级上册25.2 用列举法求概率优秀同步训练题,共9页。试卷主要包含了2 用列举法求概率》基础巩固卷等内容,欢迎下载使用。
人教版九年级上册第二十五章 概率初步25.2 用列举法求概率精品精练: 这是一份人教版九年级上册第二十五章 概率初步25.2 用列举法求概率精品精练,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册25.2 用列举法求概率第2课时习题: 这是一份初中数学人教版九年级上册25.2 用列举法求概率第2课时习题,共4页。