搜索
    上传资料 赚现金
    10.3几个三角恒等式 同步练习苏教版(2019)高中数学必修二
    立即下载
    加入资料篮
    10.3几个三角恒等式 同步练习苏教版(2019)高中数学必修二01
    10.3几个三角恒等式 同步练习苏教版(2019)高中数学必修二02
    10.3几个三角恒等式 同步练习苏教版(2019)高中数学必修二03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学苏教版 (2019)必修 第二册10.3 几个三角恒等式精品练习题

    展开
    这是一份高中数学苏教版 (2019)必修 第二册10.3 几个三角恒等式精品练习题,共21页。试卷主要包含了0分),2.,【答案】B,【答案】D,【答案】C等内容,欢迎下载使用。

     

    10.3几个三角恒等式同步练习苏教版( 2019)高中数学必修二

    一、单选题(本大题共12小题,共60.0分)

    1. 的内角ABC的对边分别为ab,则角

    A.  B.  C.  D.

    1. ,则       

    A.  B.  C.  D.

    1. 已知,且,则等于

    A.  B.  C.  D.

    1. 已知函数,则的值不可能是

    A.  B.  C. 0 D. 2

    1. 已知函数,则的值不可能是

    A.  B.  C. 0 D. 2

    1. 已知,则等于

    A.  B.  C.  D.

    1. 已知,则等于   

    A.  B.  C.  D.

    1. 已知,则

    A.  B.  C.  D. 3

    1.  已知,且,则等于    

    A.  B.  C.  D.

    1. ,且,则的值为

    A.  B.  C.  D.

    1. 中,,则的形状是  

    A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 直角三角形

    1. 已知为第二象限角,则   

    A.  B.  C.  D.

    二、单空题(本大题共3小题,共15.0分)

    1. ,且,则的值是______________
    2. 已知,则__________
    3. 已知为锐角,,则          

    三、多空题(本大题共3小题,共15.0分)

    1. 已知,则的值为          的值为          
    2. 如下图,在扇形AOB中,半径为1的长为2,则所对的圆心角的大小为          rad;若点P上的一个动点,则当取得最大值时,则的夹角          
       

     

    1. 已知,则                    

    四、解答题(本大题共7小题,共84.0分)

    1. 已知,且

    的值;

    的值.






     

    1. 这三个条件中任选一个补充在下面的横线上,并加以解答.
      中,角ABC所对的边分别为abc,且           
      求角A的大小;
      ,求面积的最大值.






       
    2. 设平面向量,函数
      时,求函数的最小值;

    若锐角满足,求的值.






     

    1. 证明:








     

    1. 已知,且是第四象限角,求的值;






       
    2. 把下列各式化成和或差的形式:










       
    3. 已知,角x终边在第一象限,求的值.







    答案和解析

    1.【答案】D
     

    【解析】解:根据题意,
    由正弦定理可得
    则有
    变形可得:
    又由,则
    则有,即
    又由,则,即

    故选:D
    根据题意,由正弦定理可得,由三角函数的恒等变形公式可得,变形可得,进而分析可得答案.
    本题考查三角函数的恒等变形,涉及三角函数的和差化积公式的应用,属于基础题.
     

    2.【答案】B
     

    【解析】

    【分析】

    本题主要考查半角公式,考查同角三角函数关系以及相关公式定义的化简求值的运用.
    根据角的范围确定角所在的象限,求出的值,再根据半角公式求出,最后根据二倍角公式即可求得结果.

    【解答】

    解:,即
    为第二象限角,



    为第三象限角,

    故选B

      

    3.【答案】D
     

    【解析】

    【分析】
    本题主要考查了和差化积公式以及二倍角的余弦公式,属于基础题.
    根据和差化积公式可得,结合已知条件从而得到,然后利用二倍角的余弦公式计算.
    【解答】

    解:


    故选D

      

    4.【答案】D
     

    【解析】

    【分析】
    本题主要考查两角和与差的三角函数公式,以及二倍角公式,辅助角公式,正弦函数,余弦函数的性质,积化和差公式.
     方法一:利用两角和与差的三角函数公式,以及二倍角公式,辅助角公式,正弦函数,即可得;
    方法二:利用余弦函数的性质,积化和差公式,即可得.
    【解答】
    解:方法一 

     

     x cos 

    方法二 

      

    5.【答案】D
     

    【解析】

    【分析】
    本题主要考查两角和与差的三角函数公式,以及二倍角公式,辅助角公式,正弦函数,余弦函数的性质,积化和差公式.
     方法一:利用两角和与差的三角函数公式,以及二倍角公式,辅助角公式,正弦函数,即可得;
    方法二:利用余弦函数的性质,积化和差公式,即可得.
    【解答】
    解:方法一: 

     

     x cos 

    方法二 


    故选D

      

    6.【答案】B
     

    【解析】

    【分析】

    本题主要考查半角的余弦公式的应用,属于基础题.
    由题意利用半角的余弦公式,求得的值.

    【解答】

    解:已知
    ,则
    故选B
     

      

    7.【答案】C
     

    【解析】
     

    8.【答案】B
     

    【解析】

    【分析】
    本题考查了二倍角公式和万能公式,属于基础题.
    利用万能公式得,再利用余弦的二倍角公式,计算得结论.
    【解答】
    解:由于
    所以:

    故:
    故选B  

    9.【答案】B
     

    【解析】

    【分析】

    本题考查了半角公式,是基础题.
    直接根据公式可以得出答案,注意符号.

    【解答】

    解:因为
    所以

    故选B

      

    10.【答案】C
     

    【解析】

    【分析】

    本题考查了同角三角函数关系,半角公式的应用,属于中档题.
    利用同角三角函数关系,半角公式即可得.

    【解答】

    解:由已知得


    所以

    故选C

      

    11.【答案】B
     

    【解析】

    【分析】

    本题主要考查三角形形状的判断,以及二倍角公式与积化和差公式,属于综合题.
    利用二倍角公式与积化和差公式,诱导公式将已知条件化为,即可得,即可得出结论.

    【解答】

    解:中,


    整理得:

    为等腰三角形,
    故选B

      

    12.【答案】B
     

    【解析】

    【分析】
    本题考查了诱导公式,属于基础题,由已知为第二象限角,,可得,再求出,由诱导公式可得结果.
    【解答】
    解:为第二象限角,



    故选B  

    13.【答案】 
     

    【解析】

    【分析】
    本题主要考查三角函数与三角形中的三角函数的积化和差与和差化积,利用两角和与差的三角函数解题,属于中档题.
    【解答】
    解:


    故答案为  

    14.【答案】
     

    【解析】

    【分析】
    本题考查了三角函数积化和差的知识点解题时首先根据积化和差公式将展开,可以求得的关系式,根据即可得到最终的答案.
    【解答】
    解:


    故答案为  

    15.【答案】
     

    【解析】

    【分析】
    本题考查同角三角函数的基本关系,半角公式,两角和与差的三角函数公式,属于基础题.
    易知为锐角,由同角三角函数的基本关系与半角公式求出,再由两角差的正切函数公式求解即可.
    【解答】
    解:为锐角,,则为锐角,
    ,得

    ,得


    故答案为  

    16.【答案】


     

    【解析】

    【分析】

    本题考查了两角和差公式以及半角公式,属于较难题.
    注意角之间的变形:,再利用三角函数公式可得答案.

    【解答】

    解:





    故答案为

      

    17.【答案】2

    0


     

    【解析】

    【分析】
    本题主要考查了弧度的定义,以及平面向量数量积的运用,三角函数最值的求法,考查了学生分析问题解决问题的能力,本题属于中档题.
    由圆心角的公式可求第一问,建立坐标系利用向量可求第二问.
    【解答】
    解:由弧度的定义可知,当的长为2时,所对的圆心角弧度,
    O为坐标原点,

    的方向为x轴正方向,垂直于且向上的方向为y轴正方向,

    建立平面直角坐标系,易得




    ,所以

    ,即时,取得最大值

    故答案为20  

    18.【答案】


     

    【解析】

    【分析】
    本题考查同角三角函数的基本关系、两角和与差的三角函数公式、三角函数的积化和差与和差化积公式 ,属于中档题.
    首先根据对已知式子两边平方相加,再利用两角差的余弦公式,求出,再利用和差化积公式,即可求出

    【解答】
    解:因为
    所以    
        
    ,得
    所以
    sin  cos  ,得2sin   2cos  
    两式相除得
    故答案为  

    19.【答案】解:

    因为,所以

    所以

    所以


     

    【解析】本题考查了两角和与差的三角函数公式,二倍角公式及其应用,以及同角三角函数的基本关系,属于中档题.
    由余弦的二倍角公式化单角,然后凑配成关于的齐次式,再化为,代入已知可得;

    由同角关系求得,由两角和与差的正切公式计算,再得


     

    20.【答案】解:
    ,由正弦定理得

    所以

    ,又,所以,所以

    ,从而得

    ,因为

    所以

    ,又因为,所以

    因为

    所以

    所以由正弦定理得

    由余弦定理知

    因为,所以


    ,又
    由余弦定理得

    所以,当且仅当时取得等号,

    ,所以面积的最大值为


     

    【解析】本题主要考查正弦定理、三角函数的积化和差与和差化积公式、余弦定理,三角形面积公式以及利用基本不等式求最值,属于中档题.
    依据题意,选,利用正弦定理以及三角函数的积化和差公式可求得;选由二倍角公式、两角和与差的三角函数公式求得,进而诱导公式求得先后利用正弦定理、余弦定理求得cosA,进而求得
    结合题设条件,利用余弦定理得到,当且仅当时成立,于是利用三角形面积公式可求得面积的最大值.
     

    21.【答案】解:


    ,得


    为锐角,


     

    【解析】本题考查向量的数量积以及三角函数的化简求值,考查转化思想以及计算能力,属于中档题.
    利用向量的数量积结合半角公式,辅助角公式化简求最值;
    若锐角满足,可得的值,然后将化为,代入求值即可.
     

    22.【答案】证明:         
    两式相减得  2cos  

    ,所以   
    又因为sin       
      
     
    又因为sin   所以


     

    【解析】本题考查两角和与差的正弦公式,积化和差公式,考查学生的逻辑推理及运算求解能力,属综合题.
    利用两角和与差的正弦公式将 展开,两式相减即可;
    ,根据积化和差公式得sin ,得,即可求证.
     

    23.【答案】解:因为,且是第四象限角,
    所以
    ,得

    k为偶数时,为第四象限角,
    此时

    k为奇数时,为第二象限角,

    此时


     

    【解析】本题主要考查同角三角函数的基本关系式以及半角公式.
    先根据正弦值、同角三角函数基本关系以及角的范围求余弦值再求正切值,注意讨论角的范围.
     

    24.【答案】解:



     

    【解析】本题主要考查了三角函数的积化和差公式的应用,属于基础题.
    利用三角函数的积化和差公式即可求解.
     

    25.【答案】解:,角x终边在第一象限,

     

    【解析】由条件利用同角三角函数的基本关系求得cosx的值,再利用半角公式求得的值.
    本题主要考查同角三角函数的基本关系、半角公式的应用,属于基础题.
     

    相关试卷

    苏教版 (2019)10.3 几个三角恒等式精品练习题: 这是一份苏教版 (2019)10.3 几个三角恒等式精品练习题,文件包含第09讲几个三角恒等式原卷版docx、第09讲几个三角恒等式解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    高中数学苏教版 (2019)必修 第二册10.3 几个三角恒等式随堂练习题: 这是一份高中数学苏教版 (2019)必修 第二册10.3 几个三角恒等式随堂练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册10.3 频率与概率一课一练: 这是一份人教A版 (2019)必修 第二册10.3 频率与概率一课一练,共22页。试卷主要包含了【答案】A,【答案】D,【答案】B,【答案】C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        10.3几个三角恒等式 同步练习苏教版(2019)高中数学必修二
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map