![湘教版 八年级数学下学期期末模拟卷8(含解析)01](http://img-preview.51jiaoxi.com/2/3/12058234/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湘教版 八年级数学下学期期末模拟卷8(含解析)02](http://img-preview.51jiaoxi.com/2/3/12058234/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湘教版 八年级数学下学期期末模拟卷8(含解析)03](http://img-preview.51jiaoxi.com/2/3/12058234/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湘教版 八年级数学下学期期末模拟卷8(含解析)
展开A.第一象限B.第二象限C.第三象限D.第四象限
2.(3分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
3.(3分)在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是( )
A.(﹣4,﹣3)B.(4,3)C.(﹣4,3)D.(4,﹣3)
4.(3分)将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为( )
A.y=2x﹣3B.y=2x﹣2C.y=2x+1D.y=2x
5.(3分)矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )
A.12B.24C.48D.50
6.(3分)一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1B.2C.3D.4
7.(3分)已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点( )
A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)
8.(3分)一次函数y=kx+k的图象可能是( )
A.B.C.D.
9.(3分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
10.(3分)下列命题中,错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直平分
C.矩形的对角线相等且互相垂直平分
D.角平分线上的点到角两边的距离相等
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)函数y=(k+1)x﹣7中,当k满足 时,它是一次函数.
12.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是 .
13.(3分)有一个多边形的内角和是它外角和的5倍,则这个多边形是 边形.
14.(3分)菱形的周长是20,一条对角线的长为6,则它的面积为 .
15.(3分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为 .
16.(3分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是 .
17.(3分)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为 .
18.(3分)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是 .
三、解答题(本大題共8小题,共66分)
19.(6分)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.
20.(6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
21.(8分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=4,求DE的长.
22.(8分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
根据以上信息,解答下列问题:
(1)请补全频数分布直方图;
(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
23.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
24.(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
(1)当用电量是180千瓦时时,电费是 元;
(2)第二档的用电量范围是 ;
(3)“基本电价”是 元/千瓦时;
(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?
25.(10分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
26.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
期末模拟卷(8)
参考答案与试题解析
一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)
1.(3分)在平面直角坐标系中,点(﹣2,1)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【解答】解:点(﹣2,1)在第二象限,
故选:B.
2.(3分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
【解答】解:A、32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;
B、52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;
C、82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;
D、12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.
故选:B.
3.(3分)在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是( )
A.(﹣4,﹣3)B.(4,3)C.(﹣4,3)D.(4,﹣3)
【解答】解:点(4,﹣3)关于y轴的对称点的坐标是(﹣4,﹣3),
故选:A.
4.(3分)将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为( )
A.y=2x﹣3B.y=2x﹣2C.y=2x+1D.y=2x
【解答】解:原直线的k=2,b=﹣1;向上平移2个单位长度,得到了新直线,
那么新直线的k=2,b=﹣1+2=1.
∴新直线的解析式为y=2x+1.
故选:C.
5.(3分)矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )
A.12B.24C.48D.50
【解答】解:∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为10,
∴(3x)2+(4x)2=102,
解得:x=2,
∴矩形的两邻边长分别为:6,8;
∴矩形的面积为:6×8=48.
故选:C.
6.(3分)一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1B.2C.3D.4
【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,
当(k﹣3)>0时,即k>3时,y随x的增大而增大,
分析选项可得D选项正确.
故选:D.
7.(3分)已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点( )
A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)
【解答】解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,
则,解得,∴y=x+3;
A、当x=4时,y=×4+3=9≠6,点不在直线上;
B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;
C、当x=6时,y=×6+3=12≠9,点不在直线上;
D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;
故选:B.
8.(3分)一次函数y=kx+k的图象可能是( )
A.B.
C.D.
【解答】解:当k>0时,函数图象经过一、二、三象限;
当k<0时,函数图象经过二、三、四象限,故B正确.
故选:B.
9.(3分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,也不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:A.
10.(3分)下列命题中,错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直平分
C.矩形的对角线相等且互相垂直平分
D.角平分线上的点到角两边的距离相等
【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;
B、菱形的对角线互相垂直平分,所以B选项的说法正确;
C、矩形的对角线相等且互相平分,所以C选项的说法错误;
D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.
故选:C.
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)函数y=(k+1)x﹣7中,当k满足 k≠﹣1 时,它是一次函数.
【解答】解:根据一次函数定义得,k+1≠0,
解得k≠﹣1.
故答案为:k≠﹣1.
12.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是 0.1 .
【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;
则第六组的频数是40﹣(10+5+7+6+8)=4.
故第六组的频率是,即0.1.
13.(3分)有一个多边形的内角和是它外角和的5倍,则这个多边形是 12 边形.
【解答】解:根据题意,得
(n﹣2)•180=5×360,
解得:n=12.
所以此多边形的边数为12.
14.(3分)菱形的周长是20,一条对角线的长为6,则它的面积为 24 .
【解答】解:∵菱形的周长是20
∴边长=5
∵一条对角线的长为6
∴另一条对角线的长为8
∴菱形的面积=×6×8=24.
故答案为24.
15.(3分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为 4 .
【解答】解:过点P作MN⊥AD,
∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,
∴AP⊥BP,PN⊥BC,
∴PM=PE=2,PE=PN=2,
∴MN=2+2=4.
故答案为:4.
16.(3分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是 30° .
【解答】解:过A作AE⊥BC于点E,如图所示:
由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,
得到AE=AB,又△ABE为直角三角形,
∴∠ABE=30°,
则平行四边形中最小的内角为30°.
故答案为:30°
17.(3分)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为 5cm .
【解答】解:设AF=xcm,则DF=(8﹣x)cm,
∵矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,
∴x2=42+(8﹣x) 2,
解得:x=5(cm).
故答案为:5cm
18.(3分)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是 (2,) .
【解答】解:过点B作BE⊥OE于E,
∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,
∴∠CAO=30°,
∴AC=4,
∴OB=AC=4,
由矩形的性质可知∠BOA=∠CAO=30°,
∴∠OBE=180°﹣30°﹣30°﹣90°=30°,
∴OE=2,
∴BE=2,
∴则点B的坐标是(2,),
故答案为:(2,).
三、解答题(本大題共8小题,共66分)
19.(6分)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.
【解答】证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EDA=∠FBC,
在△AED和△CFB中,
,
∴△AED≌△CFB(SAS),
∴AE=CF.
20.(6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
【解答】解:如图,设大树高为AB=10m,
小树高为CD=4m,
过C点作CE⊥AB于E,则EBDC是矩形,
连接AC,
∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,
在Rt△AEC中,AC==10m,
故小鸟至少飞行10m.
21.(8分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=4,求DE的长.
【解答】解:(1)∵E为AB的中点,DE⊥AB,
∴AD=DB,
∵四边形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD为等边三角形.
∴∠DAB=60°.
∵菱形ABCD的边AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°;
(2)∵四边形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×4=2,
由(1)可知DE和AO都是等边△ABD的高,
∴DE=AO=2.
22.(8分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
根据以上信息,解答下列问题:
(1)请补全频数分布直方图;
(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
【解答】解:(1)200﹣(35+40+70+10)=45,如下图:
(2)设抽了x人,则,解得x=8;
(3)依题意知获一等奖的人数为200×25%=50(人).
则一等奖的分数线是80分.
23.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
【解答】解:(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)△PAB如图所示,P(2,0).
24.(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
(1)当用电量是180千瓦时时,电费是 108 元;
(2)第二档的用电量范围是 180<x≤450 ;
(3)“基本电价”是 0.6 元/千瓦时;
(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?
【解答】解:(1)由函数图象,得
当用电量为180千瓦时,电费为:108元.
故答案为:108;
(2)由函数图象,得
设第二档的用电量为x千瓦时,则180<x≤450.
故答案为:180<x≤450;
(3)基本电价是:108÷180=0.6;
故答案为:0.6
(4)设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
y=0.9x﹣121.5.
y=328.5时,
x=500.
答:这个月他家用电500千瓦时.
25.(10分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
【解答】(1)证明:如图1,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF;
(2)如图2,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AF+CF=AC=DE;
(3)如图3,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF,
∵AC=DE,
∴AF=AC+FC=DE+EF.
26.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
【解答】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,
∴∠C=90°﹣∠A=30°.
∵CD=4tcm,AE=2tcm,
又∵在直角△CDF中,∠C=30°,
∴DF=CD=2tcm,
∴DF=AE;
(2)解:∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即当t=10时,▱AEFD是菱形;
(3)解:当t=时△DEF是直角三角形(∠EDF=90°);
当t=12时,△DEF是直角三角形(∠DEF=90°).
理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4tcm,
∴DF=AE=2tcm,
∴AD=2AE=4tcm,
∴4t+4t=60,
∴t=时,∠EDF=90°.
当∠DEF=90°时,DE⊥EF,
∵四边形AEFD是平行四边形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=AE,
AD=AC﹣CD=60﹣4t(cm),AE=DF=CD=2tcm,
∴60﹣4t=t,
解得t=12.
综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).
湘教版 八年级数学下学期期末模拟卷7(含解析): 这是一份湘教版 八年级数学下学期期末模拟卷7(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湘教版 八年级数学下学期期末模拟卷6(含解析): 这是一份湘教版 八年级数学下学期期末模拟卷6(含解析),共15页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
湘教版 八年级数学下学期期末模拟卷5(含解析): 这是一份湘教版 八年级数学下学期期末模拟卷5(含解析),共15页。试卷主要包含了选择题,三象限B.第一,解答题等内容,欢迎下载使用。