2021学年3 二次函数y=ax2的图象和性质习题课件ppt
展开二次函数y=-(x-1)2的图象大致是( )
【中考·兰州】在下列二次函数中,其图象的对称轴为直线x=-2的是( )A.y=(x+2)2 B.y=2x2-2C.y=-2x2-2 D.y=2(x-2)2
对于抛物线y=2(x-1)2,下列说法正确的有( )①开口向上;②顶点坐标为(0,-1);③对称轴为直线x=1;④与x轴的交点坐标为(1,0).A.1个 B.2个C.3个 D.4个
已知二次函数y=3(x+2)2与y=3(x-2)2,下列有关函数的图象说法错误的是( )A.形状相同,开口方向相反B.对称轴关于y轴对称C.顶点关于y轴对称D.关于y轴对称
【点拨】因为两个二次函数中a的值都为3,所以图象的开口方向都向上,故选A.
关于二次函数y=-2(x+3)2,下列说法正确的是( )A.其图象的开口向上B.其图象的对称轴是直线x=3C.其图象的顶点坐标是(0,3)D.当x>-3时,y随x的增大而减小
已知抛物线y=-(x+1)2上的两点A(x1,y1),B(x2,y2),如果x1<x2<-1,那么下列结论成立的是( )A.y1<y2<0 B.0<y1<y2C.0<y2<y1 D.y2<y1<0
若二次函数y=(x-m)2,当x≤3时,y随x的增大而减小,则m的取值范围是( )A.m=3 B.m>3C.m≥3 D.m≤3
【点拨】∵二次函数y=(x-m)2的二次项系数是1,∴该二次函数的图象开口向上,其对称轴是直线x=m.∵当x≤3时,y随x的增大而减小,∴m≥3.故选C.
【中考·黄冈】当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为( )A.-1 B.2 C.0或2 D.-1或2
【点拨】∵当x=0或2时,函数y=x2-2x+1=(x-1)2的值为1,∴①当x≤0时,y有最小值1;②当0<x<2时,y有最小值0;③当x≥2时,y有最小值1.∵当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,∴a+1=0或a=2.∴a=-1或a=2.
【中考·海南】把抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是( )A.向左平移2个单位长度B.向右平移2个单位长度C.向上平移2个单位长度D.向下平移2个单位长度
把函数y=-3x2的图象沿x轴向左平移5个单位长度,得到的图象的表达式为( )A.y=-3x2+5 B.y=-3x2-5C.y=-3(x+5)2 D.y=-3(x-5)2
易错警示:在比较函数值的大小时,首先要保证所有含所比较函数值的点在对称轴的同一侧,若不在对称轴的同一侧,通过抛物线的对称性将点统一到同一侧后再进行大小比较.
已知抛物线y=a(x-h)2的对称轴为直线x=-2,且过点(1,-3).(1)求抛物线的函数表达式.
(2)画出函数的图象.
解:函数图象如图所示.
(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?
解:当x<-2时,y随x的增大而增大;当x=-2时,函数有最大值.
(2)写出抛物线y=a(x-h)2的对称轴及顶点坐标.
如图,将抛物线y=x2向右平移a个单位长度后,顶点为A,与y轴交于点B,且△AOB为等腰直角三角形.(1)求a的值.
解:依题意将抛物线y=x2平移后为抛物线y=(x-a)2,即y=x2-2ax+a2.∵OA=OB,点A的坐标为(a,0),点B的坐标为(0,a2),∴a2=a.∵a≠0,∴a=1.
(2)图中的抛物线上是否存在点C,使△ABC为等腰直角三角形?若存在,直接写出点C的坐标,并求S△ABC;若不存在,请说明理由.
如图,已知二次函数y=(x+2)2的图象与x轴交于点A,与y轴交于点B.(1)求出点A,点B的坐标.
解:在y=(x+2)2中,令y=0,得x=-2;令x=0,得y=4.∴点A,点B的坐标分别为(-2,0),(0,4).
(3)求出抛物线的对称轴.
解:抛物线的对称轴为直线x=-2.
初中数学北师大版九年级下册第二章 二次函数1 二次函数优秀习题课件ppt: 这是一份初中数学北师大版九年级下册第二章 二次函数1 二次函数优秀习题课件ppt,文件包含223二次函数yax-h²和yax-h²+k的图象与性质课件pptx、第二章二次函数2二次函数的图象与性质习题223课件pptx、223二次函数yax-h2+k的图象与性质教案doc、223二次函数yax-h2的图象与性质教案doc等4份课件配套教学资源,其中PPT共28页, 欢迎下载使用。
初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质说课ppt课件: 这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质说课ppt课件,共17页。PPT课件主要包含了开口向上,开口向下,描点连线,先列表,探究归纳,直线xh,向右平移1个单位,向左平移1个单位,探究二,yax-h2等内容,欢迎下载使用。
初中数学22.1.1 二次函数课文内容ppt课件: 这是一份初中数学22.1.1 二次函数课文内容ppt课件,共43页。PPT课件主要包含了导入课题,最低点,最高点,学习目标,解先列表,然后描点画图,y2x2-1,y2x2+1,思考1,0-1等内容,欢迎下载使用。