终身会员
搜索
    上传资料 赚现金

    2021年全国各省市中考真题精编精练:方程与不等式性质 填空

    立即下载
    加入资料篮
    2021年全国各省市中考真题精编精练:方程与不等式性质  填空第1页
    2021年全国各省市中考真题精编精练:方程与不等式性质  填空第2页
    2021年全国各省市中考真题精编精练:方程与不等式性质  填空第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年全国各省市中考真题精编精练:方程与不等式性质 填空

    展开

    这是一份2021年全国各省市中考真题精编精练:方程与不等式性质 填空,共10页。


    2021年全国各省市中考真题汇总:

    方程与不等式性质考察填空

     

    1.〔2021宜宾〕不等式2x1>1的解集是      

    2.〔2021常德〕不等式2x3>x的解集是      

    3.〔2021新疆〕不等式2x1>3的解集是      

    4.〔2021东营〕不等式组的解集为         

    5.〔2021广安〕一个三角形的两边长分别为3和5,第三边长是方程x26x+8=0的根,那么这个三角形的周长为      

    6.〔2021泸州〕关于x的不等式组恰好有2个整数解,那么实数a的取值范围是          

    7.〔2021重庆〕假设关于x的方程+a=4的解是x=2,那么a的值为   

    8.〔2021吉林〕假设关于x的一元二次方程x2+3x+c=0有两个相等的实数根,那么c的值为                 

    9.〔2021黄石〕分式方程+=3的解是       

    10.〔2021枣庄〕xy满足方程组,那么x+y的值为      

    11.〔2021张家界〕方程2x4=0,那么x   

    12.〔2021本溪〕假设关于x的一元二次方程3x22xk=0有两个相等的实数根,那么k的值为                 

    13.〔2021枣庄〕假设等腰三角形的一边长是4,另两边的长是关于x的方程x26x+n=0的两个根,那么n的值为       

    14.〔2021雅安〕一元二次方程x2+x2021=0的两根分别为mn,那么+的值为        

    15.〔2021雅安〕假设关于x的分式方程2的解是正数,那么k的取值范围是           

    16.〔2021广东〕假设一元二次方程x2+bx+c=0〔bc为常数〕的两根x1x2满足3<x11,1<x2<3,那么符合条件的一个方程为                 

    17.〔2021齐齐哈尔〕假设关于x的分式方程+2的解为正数,那么m的取值范围是             

    18.〔2021柳州〕如图,在数轴上表示x的取值范围是       

    19.〔2021绥化〕mn是一元二次方程x23x2=0的两个根,那么                 

    20.〔2021通辽〕假设关于x的不等式组,有且只有2个整数解,那么a的取值范围是          

    21.〔2021黑龙江〕关于x的一元一次不等式组有解,那么a的取值范围是       

    22.〔2021湖北〕关于x的方程x22mx+m2m=0有两个实数根αβ,且=1,那么m   

    23.〔2021玉林〕方程的解是                   

    24.〔2021鄂州〕实数ab满足+|b+3|=0,假设关于x的一元二次方程x2ax+b=0的两个实数根分别为x1x2,那么+                 

    25.〔2021青海〕点A〔2m5,62m〕在第四象限,那么m的取值范围是       

    26.〔2021荆门〕关于x的不等式组恰有2个整数解,那么a的取值范围是         

    27.〔2021青海〕m是一元二次方程x2+x6=0的一个根,那么代数式m2+m的值等于    

    28.〔2021南京〕设x1x2是关于x的方程x23x+k=0的两个根,且x1=2x2,那么k   

    29.〔2021随州〕关于x的方程x2k+4〕x+4k=0〔k0〕的两实数根为x1x2,假设+=3,那么k                

    30.〔2021达州〕假设分式方程4=的解为整数,那么整数a     


    参考答案

    1.解:解不等式2x1>1得,2x>2,解得x>1.

    2.解:移项得,2xx>3,

    合并得,x>3.

    故答案为:x>3.

    3.解:2x1>3,

    移项得:2x>3+1,

    合并同类项得:2x>4,

    不等式的两边都除以2得:x>2,

    故答案为:x>2.

    4.解:解不等式1,得:x≥﹣1,

    解不等式5x1<3〔x+1〕,得:x<2,

    那么不等式组的解集为1x<2,

    故答案为:1x<2.

    5.解:x26x+8=0,

    x2〕〔x4〕=0,

    x2=0或x4=0,

    所以x1=2,x2=4,

    而2+3=5,

    所以三角形第三边的长为4,

    所以三角形的周长为3+4+5=12.

    故答案为12.

    6.解:解不等式2x3>0,得:x>1.5,

    解不等式x2a<3,得:x<2a+3,

    不等式组恰好有2个整数解,

    3<2a+34,

    解得:0<a0.5,

    故答案为:0<a0.5.

    7.解:把x=2代入方程+a=4得:+a=4,

    解得:a=3,

    故答案为:3.

    8.解:一元二次方程x2+3x+c=0有两个相等的实数根,

    ∴△=324c=0,

    解得c

    故答案为:

    9.解:原方程可变为+=3,

    所以=3,

    两边都乘以〔x2〕得,

    x=3〔x2〕,

    解得,x=3,

    检验:把x=3代入〔x2〕0,

    所以x=3是原方程的根,

    故答案为:x=3.

    10.解:方法一:

    ①﹣②,得:2x+2y4,

    x+y2,

    故答案为:2.

    方法二:

    ②×2,得:4x+2y=6

    ①﹣③,得:y7,

    y7代入,得2x7=3,

    解得:x=5,

    方程组的解为

    x+y2,

    故答案为:2.

    11.解:2x4=0,

    2x=4,

    x=2,

    故答案为:2.

    12.解:一元二次方程3x22xk=0有两个相等的实数根,

    ∴△b24ac=〔2〕24×3×k〕=0,

    解得k

    故答案为

    13.解:当4为腰长时,将x=4代入x26x+n=0,得:426×4+n=0,

    解得:n=8,

    n=8时,原方程为x26x+8=0,

    解得:x1=2,x2=4,

    2+4>4,

    n=8符合题意;

    当4为底边长时,关于x的方程x26x+n=0有两个相等的实数根,

    ∴△=〔6〕24×1×n=0,

    解得:n=9,

    n=9时,原方程为x26x+9=0,

    解得:x1x2=3,

    3+3=6>4,

    n=9符合题意.

    n的值为8或9.

    故答案为:8或9.

    14.解:一元二次方程x2+x2021=0的两根分别为mn

    m+n1,mn2021,

    +=2021,

    故答案为:2021.

    15.解:原方程去分母,得:2〔x2〕〔1k〕=1,

    解得:x

    分式方程的解为正数,且x2,

    ,且

    解得:k<4且k0,

    故答案为:k<4且k0.

    16.解:假设一元二次方程x2+bx+c=0〔bc为常数〕的两根x1x2满足3<x11,1<x2<3,

    满足条件分方程可以为:x22=0〔答案不唯一〕,

    故答案为:x22=0〔答案不唯一〕.

    17.解:去分母,得:

    3xm+2〔x1〕,

    去括号,移项,合并同类项,得:

    xm2.

    关于x的分式方程+2的解为正数,

    ∴﹣m2>0.

    x10,

    x1.

    ∴﹣m21.

    解得:m2且m≠﹣3.

    故答案为:m2且m≠﹣3.

    18.解:在数轴上表示x的取值范围是x>2.

    故答案为:x>2.

    19.解:mn是一元二次方程x23x2=0的两个根,

    m+n=3,mn2,

    故答案为:

    20.解:解不等式3x21,得:x1,

    解不等式2xa<5,得:x

    不等式组只有2个整数解,

    2<3,

    解得1<a1,

    故答案为:1<a1.

    21.解:解不等式2xa>0,得:x

    解不等式3x4<5,得:x<3,

    不等式组有解,

    <3,

    解得a<6,

    故答案为:a<6.

    22.解:关于x的方程x22mx+m2m=0有两个实数根αβ

    ∴△=〔2m24〔m2m0,解得m0,

    α+β=2mαβm2m

    =1,即=1,

    =1,

    解得m1=0,m2=3,

    经检验,m1=0不合题意,m2=3符合题意,

    m=3.

    故答案为:3.

    23.解:去分母得:2x=1,

    解得:x

    检验:当x时,2〔x1〕0,

    分式方程的解为x

    故答案为:x

    24.解:实数ab满足+|b+3|=0,

    a=2,b3,

    关于x的一元二次方程x2ax+b=0的两个实数根分别为x1x2

    x1+x2a=2,x1x2b3,

    +

    故答案为:

    25.解:A〔2m5,62m〕在第四象限,

    解得m>3,

    故答案为:m>3.

    26.解:解不等式x+a〕<3,得:xa3,

    解不等式x1,得:x4,

    不等式组有2个整数解,

    2<a33,

    解得5a<6.

    故答案为:5a<6.

    27.解:将xm代入方程x2+x6=0,

    m2+m6=0,

    m2+m=6,

    故答案为:6.

    28.解:根据题意,知x1+x2=3x2=3,那么x2=1,

    将其代入关于x的方程x23x+k=0,得123×1+k=0.

    解得k=2.

    故答案是:2.

    29.解:关于x的方程x2k+4〕x+4k=0〔k0〕的两实数根为x1x2

    x1+x2k+4,x1x2=4k

    +=3.

    解得k

    经检验,k是原方程的解.

    故答案为:

    30.解:方程两边同时乘以〔x+1〕〔x1〕得〔2xa〕〔x+1〕4〔x+1〕〔x1〕=〔x1〕〔2x+a〕,

    整理得2ax4,

    整理得ax=2,

    xa为整数,

    a±1或a±2,

    x±1为增根,

    a≠±2,

    a±1.

    故答案为:±1.

     

     

    相关试卷

    2021年全国各省市中考真题精编精练:方程与不等式性质考察解答:

    这是一份2021年全国各省市中考真题精编精练:方程与不等式性质考察解答,共11页。试卷主要包含了〔2021•广西〕解分式方程,〔2021•无锡〕〔1〕解方程,〔2021•盐城〕解不等式组,〔2021•山西〕〔1〕计算,〔2021•荆州〕等内容,欢迎下载使用。

    2021年全国各省市中考真题精编精练:方程与不等式性质 选择题(含答案):

    这是一份2021年全国各省市中考真题精编精练:方程与不等式性质 选择题(含答案),共11页。

    2021年全国各省市中考真题精编精练:统计与概率填空(含答案):

    这是一份2021年全国各省市中考真题精编精练:统计与概率填空(含答案),共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map