所属成套资源:人教版数学七年级上册同步教案
初中数学人教版七年级上册3.1.1 一元一次方程教案设计
展开
这是一份初中数学人教版七年级上册3.1.1 一元一次方程教案设计,共5页。教案主要包含了情境引入,学习新知,初步应用,课堂作业等内容,欢迎下载使用。
教学目标:
1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.
2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.
3.理解一元一次方程、方程的解等概念.
4.掌握检验某个值是不是方程的解的方法.
教学重难点:寻找相等关系,列出方程.
教学过程:
一、情境引入
提出课本P78的问题,可用多媒体演示题目描述的行驶情境.
1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?
2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.
3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?
二、学习新知
1.引导学生把题中的数量用表格形式反映题意:
2.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.
3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.
4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.
5.将题中的已知量和未知量用表格列出:
6.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.
7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.
8.比较列算式和列方程两种方法的特点:阅读课本P79.
9.举一反三:分别列算式和设未知数列方程解决下列问题:
(1)某数与它的的和是8,求这个数;
(2)班上有女生32人,比男生多,求男生人数;
(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?
三、初步应用
1.例1:课本P79例1.
例2(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;
(2)27与x的差的一半等于x的4倍.
列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.
2.练习(补充)
(1)列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
①12与x的差等于x的2倍;
②x的三分之一与5的和等于6.
二、自主尝试
1.尝试:让学生尝试解答课本P79的例1.
2.交流:
在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.
3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.
4.讨论:
问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?
问题2:在第(3)题中,你还能设其它的未知数为x吗?
5.建立概念
(1)概念的建立:
在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.
“一元”:一个未知数;“一次”:未知数的指数是一次.
判断下列方程是不是一元一次方程:
①23-x=-7; ②2a-b=3;
③ y+3=6y-9;④ 0.32m-(3+0.02m) =0.7.
(2)引导学生归纳:
从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:
实际问题一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.
三、课时小结
对于本节课的学习,你有什么收获?
四、课堂作业
1.x=3是下列哪个方程的解( )
A. 3x-1-9=0 B. x=10-4x
C. x(x-2)=3D. 2x-7=12
2.方程=6的解是( )
A. -3B -
C. 12 D. -12
3.已知x-5与2x-4的值互为相反数,列出关于x的方程.
4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班共有多少名学生?如果设这个班有x名学生,请列出关于 x的方程.
路程(km)
速度(km/h)
时间(h)
卡车
x
60
客车
x
70
路程(km)
速度(km/h)
时间(h)
卡车
60
y
客车
70
y-1
相关教案
这是一份初中数学人教版七年级上册3.1.1 一元一次方程精品教学设计,共5页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。
这是一份2020-2021学年3.1.1 一元一次方程优秀教案及反思,共4页。教案主要包含了学习目标,教学重难点,教学方法,教学过程,课后反思等内容,欢迎下载使用。
这是一份数学七年级上册3.1.1 一元一次方程教学设计,共6页。教案主要包含了新课探究,例题讲解,集疑解难,达标检测,布置作业等内容,欢迎下载使用。