开学活动
搜索
    上传资料 赚现金

    高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.4生活中的优化问题举例7 Word版含解析

    高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.4生活中的优化问题举例7 Word版含解析第1页
    高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.4生活中的优化问题举例7 Word版含解析第2页
    高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.4生活中的优化问题举例7 Word版含解析第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A选修2-21.4生活中的优化问题举例同步测试题

    展开

    这是一份高中数学人教版新课标A选修2-21.4生活中的优化问题举例同步测试题,共12页。试卷主要包含了了解导数在解决实际问题中的作用,解决优化问题的基本思路是等内容,欢迎下载使用。
    【创新设计】2016-2017学年高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例课时作业 新人教版选修2-2 明目标、知重点1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值. 3.解决优化问题的基本思路是:                       上述解决优化问题的过程是一个典型的数学建模过程.情境导学]生活中经常遇到求利润最大、用料最省、效率最高等问题?这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的优化问题.探究点一 面积、体积的最值问题思考 如何利用导数解决生活中的优化问题?答 (1)函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系式yf(x).(2)确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围.(3)求最值,此处尽量使用导数法求出函数的最值.(4)下结论,回扣题目,给出圆满的答案.例1 学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?解 设版心的高为x dm,则版心的宽为 dm,此时四周空白面积为S(x)=(x+4)-128=2x+8,x>0.求导数,得S′(x)=2-.S′(x)=2-=0,解得x=16(x=-16舍去).于是宽为=8.x∈(0,16)时,S′(x)<0;x∈(16,+∞)时,S′(x)>0.因此,x=16是函数S(x)的极小值点,也是最小值点.所以,当版心高为16 dm,宽为8 dm时,能使海报四周空白面积最小.反思与感悟 (1)在求最值时,往往建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.(2)在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域.跟踪训练1 如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________米.答案 32,16解析 要求材料最省就是要求新砌的墙壁总长度最短,设场地宽为x米,则长为米,因此新墙壁总长度L=2x(x>0),则L′=2-.L′=0,得x=±16.x>0,∴x=16.x=16时,Lmin=64,此时堆料场的长为=32(米).探究点二 利润最大问题例2 某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r(单位:cm)是瓶子的半径.已知每出售1 mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm.则瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?解 由于瓶子的半径为r,所以每瓶饮料的利润是yf(r)=0.2×πr3-0.8πr2=0.8π,0<r≤6.f′(r)=0.8π(r2-2r)=0.r=2f′(r)=0.r∈(0,2)f′(r)<0;r∈(2,6)f′(r)>0.因此,当半径r>2时,f′(r)>0,它表示f(r)单调递增,即半径越大,利润越高;半径r<2时,f′(r)<0,它表示f(r)单调递减,即半径越大,利润越低.∴半径为2 cm时,利润最小,这时f(2)<0,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.半径为6 cm时,利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有:(1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x=5时,y=11,所以+10=11,所以a=2.(2)由(1)可知,该商品每日的销售量y+10(x-6)2所以商场每日销售该商品所获得的利润f(x)=(x-3)+10(x-6)2]=2+10(x-3)(x-6)2,3<x<6.从而,f′(x)=10(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).于是,当x变化时,f′(x),f(x)的变化情况如下表:x(3,4)4(4,6)f′(x)0f(x)单调递增极大值42单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.探究点三 费用(用材)最省问题例3 已知AB两地相距200 km,一只船从A地逆水行驶到B地,水速为8 km/h,船在静水中的速度为v km/h(8<vv0).若船每小时的燃料费与其在静水中的速度的平方成正比,当v=12 km/h时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?解 设每小时的燃料费为y1,比例系数为k(k>0),y1kv2,当v=12时,y1=720,∴720=k·122,得k=5.设全程燃料费为y,由题意,得yy1·y′=.y′=0,得v=16,∴当v0≥16,v=16 km/h时全程燃料费最省,ymin=32 000(元);v0<16,即v∈(8,v0]时,y′<0,y在(8,v0]上为减函数,∴当vv0时,ymin(元).综上,当v0≥16时,v=16 km/h全程燃料费最省,为32 000元;v0<16,即vv0时全程燃料费最省,为元.反思与感悟 本题在解题过程中容易忽视定义域,误以为v=16时取得最小值.本题的关键是弄清极值点是否在定义域范围内.跟踪训练3 现有一批货物由海上从A地运往B地,已知轮船的最大航行速度为35海里/时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y(元)表示为速度x(海里/时)的函数;(2)为了使全程运输成本最小,轮船应以多大速度行驶?解 (1)依题意得y(960+0.6x2)=+300x,且由题意知,函数的定义域为(0,35],y+300x(0<x≤35).(2)由(1)知,y′=-+300,令y′=0,解得x=40或x=-40(舍去).因为函数的定义域为(0,35],所以函数在定义域内没有极值点.又当0<x≤35时,y′<0,所以y+300x在(0,35]上单调递减,故当x=35时,函数y+300x取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度行驶.1.方底无盖水箱的容积为256,则最省材料时,它的高为(  )A.4  B.6  C.4.5  D.8答案 A解析 设底面边长为x,高为hV(x)=x2·h=256,∴hS(x)=x2+4xhx2+4x·x2S′(x)=2x.S′(x)=0,解得x=8,∴h=4.2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为xx∈(0,0.048 6),若使银行获得最大收益,则x的取值为(  )A.0.016 2   B.0.032 4C.0.024 3   D.0.048 6答案 B解析 依题意,得存款量是kx2,银行支付的利息是kx3,获得的贷款利息是0.048 6kx2,其中x∈(0,0.048 6).所以银行的收益是y=0.048 6kx2kx3(0<x<0.048 6),则y′=0.097 2kx-3kx2(0<x<0.048 6).y′=0,得x=0.032 4或x=0(舍去).当0<x<0.032 4时,y′>0;当0.032 4<x<0.048 6时,y′<0.所以当x=0.032 4时,y取得最大值,即当存款利率为0.032 4时,银行获得最大收益.3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为yx3x+8(0<x≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 当速度为x千米/时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得h(x)=×x2(0<x≤120),h′(x)=(0<x≤120).h′(x)=0,得x=80.因为x∈(0,80)时,h′(x)<0,h(x)是减函数;x∈(80,120]时,h′(x)>0,h(x)是增函数,所以当x=80时,h(x)取得极小值h(80)=11.25(升).因为h(x)在(0,120]上只有一个极小值,所以它是最小值.答 汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.呈重点、现规律]正确理解题意,建立数学模型,利用导数求解是解应用题的主要思路.另外需要特别注意:(1)合理选择变量,正确给出函数表达式;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、基础过关1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=x3x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是(  )A.8  B.  C.-1  D.-8答案 C解析 原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.2.设底为等边三角形的直三棱柱的体积为V,那么其表面积最小时底面边长为(  )A.  B.  C.  D.2答案 C解析 设底面边长为x则表面积Sx2V(x>0).S′=(x3-4V).S′=0,得x.3.如果圆柱轴截面的周长l为定值,则体积的最大值为(  )A.3π   B.3πC.3π   D.3π答案 A解析 设圆柱的底面半径为r,高为h,体积为V则4r+2hlhVπr2hπr2-2πr3.V′=lπr-6πr2V′=0,得r=0或r,而r>0,r是其唯一的极值点.∴当r时,V取得最大值,最大值为3π.4.用边长为120 cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为(  )A.120 000 cm3   B.128 000 cm3C.150 000 cm3   D.158 000 cm3答案 B解析 设水箱底边长为x cm,则水箱高h=60-(cm).水箱容积VV(x)=x2h=60x2 (cm3)(0<x<120).V′(x)=120xx2.V′(x)=0,得x=0(舍去)或x=80.可判断得x=80 (cm)时,V取最大值为128 000 cm3.5.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是R(x)=则当总利润最大时,每年生产产品的单位数是(  )A.150  B.200  C.250  D.300答案 D解析 由题意得,总利润P(x)=P′(x)=0,得x=300,故选D.二、能力提升6.为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长为a米,高为b米.已知流出的水中该杂质的质量分数与ab的乘积ab成反比,现有制箱材料60平方米,问当a=________,b=________时,经沉淀后流出的水中该杂质的质量分数最小(AB孔的面积忽略不计).答案 6 3解析 设y为流出的水中杂质的质量分数,则y,其中k(k>0)为比例系数.依题意,即所求的ab值使y值最小,根据题设,4b+2ab+2a=60(a>0,b>0)得b(0<a<30).于是y.y′==0,a=6或a=-10(舍去).∵本题只有一个极值点,∴此极值点即为最值点.a=6时,b=3,即当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.7.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是(  )A. cm2   B.4  cm2C.3 cm2   D.2 cm2答案 D解析 设一个正三角形的边长为x cm,则另一个正三角形的边长为(4-x)cm,则这两个正三角形的面积之和为Sx2(4-x)2(x-2)2+4]≥2(cm2),故选D.8.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.答案 3解析 设圆柱的底面半径为R,母线长为L,则V=πR2L=27π,∴L,要使用料最省,只须使圆柱表面积最小,由题意,S=πR2+2πRL=πR2+2π·S′(R)=2πR=0,∴R=3,则当R=3时,S最小.9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解 设广告的高和宽分别为x cm,y cm,则每栏的高和宽分别为x-20,,其中x>20,y>25.两栏面积之和为2(x-20)·=18 000,由此得y+25.广告的面积Sxyx(+25)=+25x.S′=+25=+25.S′>0得x>140,S′<0得20<x<140.∴函数在(140,+∞)上单调递增,在(20,140)上单调递减,S(x)的最小值为S(140).x=140时,y=175.即当x=140,y=175时,S取得最小值24 500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.10.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?解 (1)设需新建n个桥墩,则(n+1)xm,即n-1.所以yf(x)=256n+(n+1)(2+)x=256(2+)xm+2m-256.(2)由(1)知,f′(x)=-mx(x-512).f′(x)=0,得x=512,所以x=64.当0<x<64时,f′(x)<0,f(x)在区间(0,64)内为减函数;当64<x<640时,f′(x)>0,f(x)在区间(64,640)内为增函数,所以f(x)在x=64处取得最小值.此时n-1=-1=9.故需新建9个桥墩才能使y最小.11.一火车锅炉每小时煤消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需200元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?解 设速度为x km/h,甲、乙两城距离为a km.则总费用f(x)=(kx3+200)·a(kx2).由已知条件,得40=k·203,∴kf(x)=a(x2).f′(x)==0,x=10.当0<x<10时,f′(x)<0;当10<x<100时,f′(x)>0.∴当x=10时,f(x)有最小值,即速度为10 km/h时,总费用最少.三、探究与拓展12.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.解 (1)设容器的容积为V由题意知V=πr2lπr3,又Vlr(r).由于l≥2r,因此0<r≤2.所以建造费用y=2πrl×3+4πr2c=2πr×(r)×3+4πr2c因此y=4π(c-2)r2,0<r≤2.(2)由(1)得y′=8π(c-2)r(r3),0<r≤2.由于c>3,所以c-2>0.r3=0时,r.m,则m>0,所以y′=(rm)(r2rmm2).①当0<m<2,即c>时,y′=0,得rm.r∈(0,m)时,y′<0;r∈(m,2]时,y′>0,所以rm是函数y的极小值点,也是最小值点.②当m≥2,即3<c时,r∈(0,2]时,y′≤0,函数单调递减,所以r=2是函数y的最小值点.综上所述,当3<c时,建造费用最小时r=2;c>时,建造费用最小时r.

    相关试卷

    高中数学人教版新课标A选修2-21.4生活中的优化问题举例习题:

    这是一份高中数学人教版新课标A选修2-21.4生活中的优化问题举例习题,共16页。试卷主要包含了4 生活中的优化问题举例等内容,欢迎下载使用。

    高中数学人教版新课标A选修2-21.4生活中的优化问题举例免费课后测评:

    这是一份高中数学人教版新课标A选修2-21.4生活中的优化问题举例免费课后测评,共20页。试卷主要包含了4 生活中的优化问题举例等内容,欢迎下载使用。

    高中数学人教版新课标A选修2-21.4生活中的优化问题举例精练:

    这是一份高中数学人教版新课标A选修2-21.4生活中的优化问题举例精练,共12页。试卷主要包含了了解导数在解决实际问题中的作用,解决优化问题的基本思路是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map