


所属成套资源:沪科版八年级下册数学同步练习
- 18.2勾股定理的逆定理课时训练(含答案) 试卷 4 次下载
- 19.1多边形内角和课时训练(含答案) 试卷 4 次下载
- 19.3矩形、菱形、四边形课时训练(含答案) 试卷 7 次下载
- 19.4综合与实践多边形的镶嵌课时训练(含答案) 试卷 4 次下载
- 20.1数据的频数分布课时训练(含答案) 试卷 4 次下载
沪科版19.2 平行四边形精品精练
展开
这是一份沪科版19.2 平行四边形精品精练,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
19.2平行四边形课时训练学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.如图,在平行四边形中,,.作于点E,于点F,记的度数为,,.则以下选项错误的是( )A.B.的度数为C.若,则四边形的面积为平行四边形面积的一半D.若,则平行四边形的周长为2.平行四边形一边的长是,则这个平行四边形的两条对角线长可以是( )A.或 B.或 C.或 D.或3.已知平行四边形的一边长为5,则对角线,的长可取下列数据中的( )A.2和4 B.3和4 C.4和5 D.5和64.已知点,,,.记为内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则所有可能的值为( )A.6、7 B.7、8 C.6、7、8 D.6、8、95.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是( )A.60 B.30 C.20 D.166.在平面直角坐标系中,点A,B,C的坐标分别为,,,当四边形ABCD是平行四边形时,点D的坐标为( )A. B. C. D.7.如图,在平行四边形中,平分,则平行四边形的周长是( )A. B. C. D.8.如图,是直线上的一点,且.已知的面积为,则的面积为( )A.52 B.26 C.13 D.399.如图,在中,对角线,相交于点,、是对角线上的两点,给出下列四个条件,其中不能判定四边形是平行四边形的有( )A. B. C. D.10.如图,在平行四边形中,,则等于( )A.50° B.65° C.100° D.130° 二、填空题11.如图,在平行四边形中,的平分线与的延长线交于点E、与交于点F,且点F为边的中点,的平分线交于点M,交于点N,连接.若,则的长为_______.12.点是平行四边形的对称中心,,、分别是边上的点,且;、分别是边上的点,且;若,分别表示和的面积,则,之间的等量关系是__________.13.如图所示,在平行四边形中,平分交边于点,且,则的长为______.14.如图,过对角线的交点,交于,交于,若的周长为19,,则四边形的周长为_____.15.在平面直角坐标系中,的三个顶点的坐标分别为,则其第四个顶点的坐标为______.16.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠BAD=127°,则∠BCE=____. 三、解答题17.如图,在中,、分别是和的角平分线,已知.(1)求线段的长;(2)延长,交的延长线于点Q.①请在答卷上补全图形;②若,求的周长.18.在中,,点E在边所在的直线上,过点E作交直线于点D,交直线于点F,构造出平行四边形.(1)若点E在线段上时.①求证:.②求证:.(2)点E在边所在的直线上,若,,请作出简单示意图并直接写出的长度.19.如图,平行四边形中,分别平分和,交于边上点P,.(1)求线段的长.(2)若,求的面积.20.已知:平行四边形中,点为边的中点,点为边的中点,联结、.(1)求证:∥;(2)过点作,垂足为,联结.求证:△是等腰三角形.
参考答案1.C2.D3.D4.C5.C6.A7.C8.C9.B10.A11.12.13.414.14.515.16.37°17.(1)10;(2)①见解析;②36解:(1)∵在□ABCD中,AD=5,∴BC=5,∵AB∥CD,∴∠BAP=∠DPA,∵AP平分∠BAD,∴∠BAP=∠DAP,∴∠DAP=∠DPA,∴DP=AD=5,同理可得,CP=BC=5,∴CD=10,∴AB=10;(2)①如图所示:②∵AD∥BQ,∴∠Q=∠DAP,又∵∠DAP=∠BAP,∴∠Q=∠BAP,∴AB=QB=10,又∵BP平分∠ABQ,∴BP⊥AQ,AP=QP,∴Rt△ABP中,AP==8, ∴AQ=16,∴△ABQ的周长为:16+10+10=36.18.(1)①见解析;②见解析;(2)10或6解:(1)①∵EF∥AC,∴∠FEB=∠A,又∵AC=BC,∴∠B=∠A,∴∠FEB=∠B,∴FE=FB;②∵EF∥AC,DE∥BC,∴四边形CDEF是平行四边形.∴CF=DE,∵EF=BF,∴DE+EF=CF+BF=BC;(2)如图,同理可得:BF=EF,∴DE=BC+BF=BC+EF=8+2=10.如图,同理可得:BF=EF,DE=CF=BF-BC=EF-BC=2-8=-6(不合题意).如图④,DE=BC-BF=BC-EF=8-2=6.19.(1)5;(2)6解:(1)∵AP平分∠DAB,∴∠DAP=∠PAB,∵四边形ABCD是平行四边形,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;在Rt△APB中,AB=5,BP=3,∴AP==4,∴△APB的面积=4×3÷2=6.20.(1)见解析;(2)见解析解:(1)证明:∵四边形是平行四边形,∴∥且.∵点、分别是边、的中点,∴,. ∴.又∵∥,∴四边形是平行四边形 ∴∥. (2)设BH与CN交于点E,∵AM∥CN,BH⊥AM,∴BH⊥CN,∵N是AB的中点,∴EN是△BAH的中位线,∴BE=EH,∴CN是BH的垂直平分线,∴CH=CB,∴△BCH是等腰三角形.
相关试卷
这是一份数学八年级下册19.2 平行四边形精品测试题,文件包含专题192平行四边形的性质解析版docx、专题192平行四边形的性质原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份2020-2021学年第19章 四边形19.2 平行四边形达标测试,共2页。试卷主要包含了在▱ABCD中,∠A,已知点A等内容,欢迎下载使用。
这是一份沪科版八年级下册19.2 平行四边形课后作业题,共8页。试卷主要包含了5 D等内容,欢迎下载使用。
