高中10.3 频率与概率精品学案
展开频率与概率
【学习目标】
1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别
2.会用概率的意义解释生活中的实例
3.会用随机模拟的方法估计概率
【学习重难点】
1.频率与概率
2.概率的意义解释实例
3.随机模拟
【学习过程】
一、问题导入
预习教材内容,思考以下问题:
1.什么是频率的稳定性?
2.频率与概率之间有什么关系?
3.随机模拟的步骤是什么?
二、合作探究
由频率估计随机事件的概率
例1:(1)有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 ;[15.5,19.5) 4 ;[19.5,23.5) 9;
[23.5,27.5) 18 ;[27.5,31.5) 11 ;[31.5,35.5) 12;
[35.5,39.5) 7 ;[39.5,43.5] 3.
根据样本的频率分布,估计数据落在[31.5,43.5]内的概率约是()
A. B.
C. D.
(2)某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:
分组 | [500, 900) | [900, 1 100) | [1 100, 1 300) | [1 300, 1 500) | [1 500, 1 700) | [1 700, 1 900) | [1 900, +∞) |
频数 | 48 | 121 | 208 | 223 | 193 | 165 | 42 |
频率 |
|
|
|
|
|
|
|
①将各组的频率填入表中;
②根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
概率的含义
例2:某医院治疗一种疾病的治愈率为10%,那么,前9个病人都没有治愈,第10个病人就一定能治愈吗?
游戏的公平性
例3:某校高二年级(1)(2)班准备联合举办晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?
[变条件]在本例中,若把游戏规则改为自由转动两个转盘,转盘停止后,两个指针指向的两个数字相乘,如果积是偶数,那么(1)班代表获胜,否则(2)班代表获胜.游戏规则公平吗?为什么?
解:不公平.因为出现奇数的概率为=,而出现偶数的概率为=.
随机模拟法估计概率
例4:池州九华山是著名的旅游胜地.天气预报8月1日后连续四天,每天下雨的概率为0.6.现用随机模拟的方法估计四天中恰有三天下雨的概率:在0~9十个整数值中,假定0,1,2,3,4,5表示当天下雨,6,7,8,9表示当天不下雨.在随机数表中从某位置按从左到右的顺序读取如下40组四位随机数:
9533 9522 0018 7472 0018 3879 5869 3281 7890 2692
8280 8425 3990 8460 7980 2436 5987 3882 0753 8935
9635 2379 1805 9890 0735 4640 6298 8054 9720 5695
1574 8008 3216 6470 5080 6772 1642 7920 3189 0343
据此估计四天中恰有三天下雨的概率为()
A. B.
C. D.
【学习小结】
频率的稳定性
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
【精炼反馈】
1.抛掷一枚硬币100次,正面向上的次数为48次,下列说法正确的是( )
A.正面向上的概率为0.48
B.反面向上的概率是0.48
C.正面向上的频率为0.48
D.反面向上的频率是0.48
2.容量为20的样本数据,分组后的频数如下表:
分组 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
频数 | 2 | 3 | 4 | 5 | 4 | 2 |
则样本数据落在区间[10,40)上的频率为( )
A.0.35 B.0.45
C.0.55 D.0.65
3.某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是( )
A.明天本地有80%的区域降雨,20%的区域不降雨
B.明天本地有80%的时间降雨,20%的时间不降雨
C.明天本地降雨的机会是80%
D.以上说法均不正确
4.通过模拟试验,产生了20组随机数:
6830301370557430774044227884
2604334609526807970657745725
657659299768607191386754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为( )
A.25% B.30%
C.35% D.40%
5.玲玲和倩倩下跳棋,为了确定谁先走第一步,玲玲决定拿一个飞镖射向如图所示的靶中.若射中区域所标的数字大于3,则玲玲先走第一步,否则倩倩先走第一步.这个游戏规则________(填“公平”或“不公平”).
【参考答案】
二、合作探究
例1:【答案】(1)选B.由已知,样本容量为66,而落在[31.5,43.5]内的样本数为12+7+3=22,故所求概率约为=.
(2)①频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042.
②样本中寿命不足1 500小时的频数是48+121+208+223=600,
所以样本中寿命不足1 500小时的频率是=0.6.
即灯管使用寿命不足1 500小时的概率约为0.6.
例2:【答案】如果把治疗一个病人作为一次试验,治愈率是10%指随着试验次数的增加,有10%的病人能够治愈.对于一次试验来说,其结果是随机的,但治愈的可能性是10%,前9个病人是这样,第10个病人仍是这样,可能治愈,也可能不能治愈,被治愈的可能性仍是10%.
例3:【答案】该方案是公平的,理由如下:各种情况如表所示:
和 | 4 | 5 | 6 | 7 |
1 | 5 | 6 | 7 | 8 |
2 | 6 | 7 | 8 | 9 |
3 | 7 | 8 | 9 | 10 |
由表可知该游戏可能出现的情况共有12种,其中两数字之和为偶数的有6种,为奇数的也有6种,所以(1)班代表获胜的概率P1==,(2)班代表获胜的概率P2==,即P1=P2,机会是均等的,所以该方案对双方是公平的.
例4:【答案】B
【解析】在40组四位随机数中,0~5的整数恰出现3次的四位数有16组,故四天中恰有三天下雨的概率的估计值为=.
【精炼反馈】
1.【答案】C
【解析】选C.因为抛掷一枚硬币100次,即为100次试验,正面向上这一事件发生了48次,根据频率的定义可知,正面向上的频率为0.48.
2.【答案】B
【解析】选B.在区间[10,40)的频数为2+3+4=9,所以频率为=0.45.
3.【答案】C
【解析】选C.选项A,B显然不正确,因为80%是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的机会是80%,故选C.
4.【答案】A
【解析】选A.表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为=25%.
5.【答案】不公平
【解析】由已知得,所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是,倩倩先走的概率是,所以不公平.
数学必修 第二册10.3 频率与概率导学案及答案: 这是一份数学必修 第二册10.3 频率与概率导学案及答案,共4页。
高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率优质导学案: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.3 频率与概率优质导学案,文件包含同步导学案高中数学人教A版2019必修第二册--103频率与概率导学案原卷版docx、同步导学案高中数学人教A版2019必修第二册--103频率与概率导学案解析版docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。
高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体精品学案及答案: 这是一份高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体精品学案及答案,共14页。学案主要包含了第一学时,学习目标,学习重难点,学习过程,学习小结,精炼反馈,第二学时等内容,欢迎下载使用。