- 5.2 第3课时 由视图确定几何体 PPT课件 课件 18 次下载
- 北师大版数学九上 第五章 小结与复习 PPT课件 课件 22 次下载
- 6.2 第1课时 反比例函数的图象 PPT课件 课件 25 次下载
- 6.2 第2课时 反比例函数的性质 PPT课件 课件 30 次下载
- 6.3 反比例函数的应用 PPT课件 课件 22 次下载
北师大版九年级上册1 反比例函数多媒体教学课件ppt
展开1. 理解并掌握反比例函数的概念. (重点)2. 从实际问题中抽象出反比例函数的概念,能根据已知 条件确定反比例函数的解析式. (重点、难点)
新学期伊始,小明想买一些笔记本为以后的学习做准备. 妈妈给了小明 30 元钱,小明可以如何选择笔记本的价钱和数量呢?
通过填表,你发现 x,y 之间具有怎样的关系?你还能举出这样的例子吗?
下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.
(1) 京沪线铁路全程为1463 km,某次列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;
(3) 已知北京市的总面积为1.68×104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化.
观察以上三个解析式,你觉得它们有什么共同特点?
都具有 的形式,其中 是常数.
(k为常数,k ≠ 0) 的函数,叫做反比例函数,其中 x 是自变量,y 是函数.
因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.
但实际问题中,应根据具体情况来确定反比例函数自变量的取值范围.
反比例函数的三种表达方式:(注意 k ≠ 0)
下列函数是不是反比例函数?若是,请指出 k 的值.
解得 k =-2.
方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可.
1. 已知函数 是反比例函数,则 k 必须满足 .
2. 当m= 时, 是反比例函数.
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.(1) 写出 y 关于 x 的函数解析式;
解得 k =12.
(2) 当 x=4 时,求 y 的值.
方法总结:用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式,②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数; ④写出反比例函数解析式.
已知变量 y 与 x 成反比例,且当 x=3时,y=-4.(1) 写出 y 关于 x 的函数解析式;(2) 当 y=6 时,求 x 的值.
解得 k =-12.
解得 x =-2.
例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100km/h 时视野的度数.
当 v=100 时,f =40.所以当车速为100km/h 时视野为40度.
解得 k =4000.
如图所示,已知菱形 ABCD 的面积为180,设它的两条对角线 AC,BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并指出它是什么函数.
解:因为菱形的面积等于两条对角线长乘积的一半,
1. 生活中有许多反比例函数的例子,在下面的实例中, x 和 y 成反比例函数关系的有 ( )
① x人共饮水10 kg,平均每人饮水 y kg;②底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;③用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;④在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 yA. 1个 B. 2个 C. 3个 D. 4个
A. B. C. D.
2. 下列函数中,y是x的反比例函数的是 ( )
3. 填空 (1) 若 是反比例函数,则 m 的取值范围 是 . (2) 若 是反比例函数,则m的取值范 围是 . (3) 若 是反比例函数,则m的取值范围 是 .
m ≠ 0 且 m ≠ -2
4. 已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值.
5. 小明家离学校 1000 m,每天他往返于两地之间,有 时步行,有时骑车.假设小明每天上学时的平均速 度为 v ( m/min ),所用的时间为 t ( min ). (1) 求变量 v 和 t 之间的函数关系式;
(2) 小明星期二步行上学用了 25 min,星期三骑自行 车上学用了 8 min,那么他星期三上学时的平均 速度比星期二快多少?
125-40=85 ( m/min ).答:他星期三上学时的平均速度比星期二快 85 m/min.
6. 已知 y = y1+y2,y1与 (x-1) 成正比例,y2 与 (x + 1) 成反比例,当 x = 0 时,y =-3;当 x =1 时,y = -1, 求:
(1) y 关于 x 的关系式;
∵ x = 0 时,y =-3;x =1 时,y = -1,
-3=-k1+k2 ,
∴k1=1,k2=-2.
初中数学浙教版八年级下册第六章 反比例函数6.1 反比例函数教学演示课件ppt: 这是一份初中数学浙教版八年级下册第六章 反比例函数6.1 反比例函数教学演示课件ppt,共12页。PPT课件主要包含了1反比例函数,新课导入,汽车从杭州开往庆元,新知探究,生活实例,辨一辨,典型例题,背景知识,阻力臂,动力臂等内容,欢迎下载使用。
初中数学浙教版八年级下册6.1 反比例函数评课课件ppt: 这是一份初中数学浙教版八年级下册6.1 反比例函数评课课件ppt,共18页。PPT课件主要包含了情境引入,1xy1600,2xy48,x≠0,概念辨析,针对练习,1说出比例系数,例题精讲,课堂小结,温故知新等内容,欢迎下载使用。
初中数学1 反比例函数背景图课件ppt: 这是一份初中数学1 反比例函数背景图课件ppt,共10页。PPT课件主要包含了反比例函数,快乐预习感知,轻松尝试应用等内容,欢迎下载使用。