高中数学人教B版 (2019)必修 第一册1.2.3 充分条件、必要条件优秀第2课时2课时教案
展开1.充要条件的概念
一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.
2.充要条件的判断
(1)一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.
概括地说,如果p⇔q,那么p与q互为充要条件.
(1)若p⇒q,但qp,则称p是q的充分不必要条件.
(2)若q⇒p,但pq,则称p是q的必要不充分条件.
(3)若pq,且qp,则称p是q的既不充分也不必要条件.
思考:(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?
(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?
提示:(1)正确.若p是q的充要条件,则p⇔q,即p等价于q.
(2)①p是q的充要条件说明p是条件,q是结论.
②p的充要条件是q说明q是条件,p是结论.
1.下列命题,条件p是结论q的充要条件的是( )
A.p:a=0,q:ab=0 B.p:a=b,q:(a-b)2=0
C.p:|a|=1,q:a=1 D.p:a=b,q:|a|=|b|
B [A.a=0⇒ab=0;若ab=0可以推出a和b至少有一个为0,故A错误;
B.a=b⇒(a-b)2=0,故B正确;
C.若|a|=1,可得a=±1,|a|=1,推不出a=1,故C错误;
D.若|a|=|b|,可得a=±b,故D错误.故选B.]
2. 设x∈R,则x>2的一个必要不充分条件是( )
A.x>1 B.x<1
C.x>3 D.x<3
A [∵x>2⇒x>1,但x>1x>2,∴选A.]
3.“a=0且b=0”是“a2+b2=0,a,b是实数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
C [a=0且b=0可以推出a2+b2=0,a2+b2=0可以推出a=0且b=0.]
4.有下列命题: ①a>b>0是a2>b2的充要条件; ②a>b>0是eq \f(1,a)<eq \f(1,b)的充要条件; ③a>b>0是a3>b3的充要条件.其中错误的说法有________.(填序号)
①②③ [①由不等式的性质易得a>b>0⇒a2>b2,反之则不成立,如a=-2,b=1.
②由不等式的性质易得a>b>0⇒eq \f(1,a)<eq \f(1,b),反之则不成立,如a=-2,b=1.
③由不等式的性质易得a>b>0⇒a3>b3,反之则不成立,如a=-2,b=-3.]
【例1】 下列各题中,哪些p是q的充要条件?
(1)p:x>0,y>0,q:xy>0;
(2)p:a>b,q:a+c>b+c;
(3)p:x>5,q:x>10;
(4)p:a>b,q:a2>b2.
[解] 命题(1)中,p⇒q,但qp,故p不是q的充要条件;
命题(2)中,p⇒q,且q⇒p,即p⇔q,故p是q的充要条件;
命题(3)中,pq,但q⇒p,故p不是q的充要条件;
命题(4)中,pq,且qp,故p不是q的充要条件.
充要条件判断的两种方法
(1)要判断一个条件p是否是q的充要条件,需要从充分性和必要性两个方向进行,即判断两个命题“若p,则q”为真且“若q,则p”为真.
(2)在判断的过程中也可以转化为集合的思想来判断,判断p与q的解集是相同的,判断前必须分清楚充分性和必要性,即搞清楚由哪些条件推证到哪些结论.
提醒:判断时一定要注意,分清充分性与必要性的判断方向.
1.在下列四个结论中,正确的有( )
①设x∈R,“x>1”是“x>2”的必要不充分条件;
②在△ABC中,“AB2+AC2=BC2”是“△ABC为直角三角形”的充要条件;
③“a2>b2”是“a>b的充分不必要条件”;
④若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.
A.①② B.③④
C.①④ D.②③
C [对于结论①,∵x>2⇒x>1,但x>1x>2,故①正确;对于结论④,由a2+b2≠0⇒a,b不全为0,反之,由a,b不全为0⇒a2+b2≠0,故④正确.]
[探究问题]
1.记集合A={x|p(x)},B={x|q(x)},若p是q的充分不必要条件,则集合A,B的关系是什么?若p是q的必要不充分条件呢?
提示:若p是q的充分不必要条件,则AB,若p是q的必要不充分条件,则BA.
2.记集合M={x|p(x)},N={x|q(x)},若M⊆N,则p是q的什么条件?若N⊆M,M=N呢?
提示:若M⊆N,则p是q的充分条件;若N⊆M,则p是q的必要条件;若M=N,则p是q的充要条件.
【例2】 已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的充分不必要条件,则实数m的取值范围为________.
[思路点拨]
[9,+∞) [因为p是q的充分不必要条件,所以p⇒q且qp.
即{x|-2≤x≤10}是{x|1-m≤x≤1+m,m>0}的真子集,
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(m>0,,1-m<-2,,1+m≥10))或eq \b\lc\{\rc\ (\a\vs4\al\c1(1-m≤-2,,m>0,,1+m>10,))解得m≥9.
所以实数m的取值范围为[9,+∞).]
利用充分、必要、充要条件的关系求参数范围
1化简p,q两命题;
2根据p与q的关系充分、必要、充要条件转化为集合间的关系;
3利用集合间的关系建立不等式;
4求解参数范围.
2.已知P={x|a-4
[解] 因为“x∈P”是“x∈Q”的必要条件,所以Q⊆P.
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a-4≤1,,a+4≥3,))解得-1≤a≤5,
即a的取值范围是[-1,5].
【例3】 已知a+b≠0,证明a2+b2-a-b+2ab=0成立的充要条件是a+b=1.
[证明] 先证充分性:若a+b=1,
则a2+b2-a-b+2ab=(a+b)2-(a+b)=1-1=0,即充分性成立,
必要性:若a2+b2-a-b+2ab=0,则(a+b)2-(a+b)=(a+b)(a+b-1)=0,
∵a+b≠0,∴a+b-1=0,即a+b=1成立,
综上,a2+b2-a-b+2ab=0成立的充要条件是a+b=1.
充要条件的证明策略
1要证明一个条件p是否是q的充要条件,需要从充分性和必要性两个方面进行,即证明两个命题“若p,则q”为真且“若q,则p”为真.
2在证明的过程中也可以转化为集合的思想来证明,证明p与q的解集是相同的,证明前必须分清楚充分性和必要性,即搞清楚由哪些条件推证到哪些结论.
提醒:证明时一定要注意,分清充分性与必要性的证明方向.
3.求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.
[证明] 假设p:方程ax2+bx+c=0有一个根是1,
q:a+b+c=0.
①证明p⇒q,即证明必要性.
∵x=1是方程ax2+bx+c=0的根,
∴a·12+b·1+c=0,即a+b+c=0.
②证明q⇒p,即证明充分性.
由a+b+c=0,得c=-a-b.
∵ax2+bx+c=0,
∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.
故(x-1)(ax+a+b)=0.
∴x=1是方程的一个根.
故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.
1.充要条件的判断有三种方法:定义法、等价命题法、集合法.
2.充要条件的证明与探求
(1)充要条件的证明分充分性和必要性的证明,在证明时要注意两种叙述方式的区别:
①p是q的充要条件,则由p⇒q证的是充分性,由q⇒p证的是必要性;
②p的充要条件是q,则p⇒q证的是必要性,由q⇒p证的是充分性.
(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.
1.“x=1”是“x2-2x+1=0”成立的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
A [当x=1时,x2-2x+1=0.由x2-2x+1=0, 解得x=1,所以“x=1”是“x2-2x+1=0成立的充要条件”. ]
2.设实数a,b满足|a|>|b|,则“a-b>0”是 “a+b>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
C [由a-b>0,得a>b.又|a|>|b|,得 a+b>0.由a+b>0,得a>-b.又|a|>|b|,得a+b>0.故“a-b>0”是“a+b>0”的充要条件.]
3.函数y=x2+mx+1的图像关于直线x=1对称的充要条件是( )
A.m=-2 B.m=2
C.m=-1 D.m=1
A [∵y=x2+mx+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(m,2)))2+1-eq \f(m2,4),
∴函数的图像的对称轴为x=-eq \f(m,2),由题意:-eq \f(m,2)=1,
∴m=-2.]
4.在平面直角坐标系中,点(x,1-x)在第一象限的充要条件是________.
0<x<1 [由题意,可得x>0,且1-x>0,∴0<x<1.]
学 习 目 标
核 心 素 养
1.理解充要条件的概念.(难点)
2.能够判定条件的充分、必要、充要性.(重点)
3.会进行简单的充要条件的证明.(重点、难点)
1.通过充要条件的判断,提升逻辑推理素养.
2.通过充分、必要、充要性的应用,培养数学运算素养.
充要条件的判断
充分条件、必要条件、充要条件的应用
有关充要条件的证明或求解
高中数学苏教版 (2019)必修 第一册2.2 充分条件、必要条件、冲要条件学案设计: 这是一份高中数学苏教版 (2019)必修 第一册2.2 充分条件、必要条件、冲要条件学案设计,共12页。学案主要包含了充分条件与必要条件,充要条件,判定定理等内容,欢迎下载使用。
高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件第2课时学案: 这是一份高中数学人教B版 (2019)必修 第一册第一章 集合与常用逻辑用语1.2 常用逻辑用语1.2.3 充分条件、必要条件第2课时学案,共10页。学案主要包含了充分不必要,充要条件的证明,探求充要条件等内容,欢迎下载使用。
高中数学第一章 集合1.2 集合之间的关系与运算本节综合第2课时导学案: 这是一份高中数学第一章 集合1.2 集合之间的关系与运算本节综合第2课时导学案,共9页。学案主要包含了充分不必要,充要条件的证明,探求充要条件等内容,欢迎下载使用。