年终活动
搜索
    上传资料 赚现金
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      1.2.3.ppt
    • 练习
      1.2.3 检测.doc
    • 1.2.3.doc
    1.2.3第1页
    1.2.3第2页
    1.2.3第3页
    1.2.3第4页
    1.2.3第5页
    1.2.3第6页
    1.2.3第7页
    1.2.3第8页
    1.2.3 检测第1页
    1.2.3第1页
    1.2.3第2页
    还剩39页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    充分条件、必要条件PPT课件免费下载

    展开

    人教B版 (2019)高中数学必修 第一册课文《充分条件、必要条件》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
    一、【探索新知】
    1.形如“如果p,那么q”的命题
    2.充分条件与必要条件
    3.从不同角度看充分条件、必要条件设集合A={x|p(x)},B={x|q(x)}.若x具有性质p,则x∈A;若x具有性质q,则x∈B.
    思考:用定义法判断充分条件和必要条件的一般步骤是什么?提示:(1)判定“若p,则q”的真假.(2)尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件.(3)尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.
    1.“a+b<0”是“a<0,b<0”的( )A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件
    2.点P(x,y)是第二象限的点的充要条件是( )A.x<0,y<0 B.x<0,y>0C.x>0,y>0 D.x>0,y<0解析:第二象限的点横坐标小于0,纵坐标大于0,所以点P(x,y)是第二象限的点的充要条件是x<0,y>0.
    3.命题p:(a+b)·(a-b)=0,q:a=b,则p是q的( )A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件解析:由命题p:(a+b)·(a-b)=0,得|a|=|b|,推不出a=b,由a=b,能推出|a|=|b|,故p是q的必要条件.
    4.设集合M=(0,3],N=(0,2],那么“a∈M”是“a∈N”的_______条件.
    5.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的_______条件.解析:因为A={1,a},B={1,2,3},A⊆B,所以a∈B且a≠1,所以a=2或3,所以“a=3”是“A⊆B”的充分条件.
    指出下列各题中p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选一个作答).(1)p:x-3=0,q:(x-2)(x-3)=0;
    (3)p:a>b,q:a+c>b+c;(4)p:a>b,q:ac>bc.二、【拓展替身】
    归纳提升:充分条件、必要条件、充要条件的判断方法1.定义法(1)分清哪个是条件,哪个是结论.(2)判断“如果p,那么q”及“如果q,那么p”的真假.(3)根据(2)得出结论.2.集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合间的包含关系进行判断.
    3.等价转化法:将命题转化为另一个与之等价的且便于判断真假的命题.4.特殊值法:对于选择题,可以取一些特殊值或特殊情况,用来说明由条件(结论)不能推出结论(条件),但是这种方法不适用于证明题.
    证明:一元二次方程ax2+bx+c=0(a≠0)有一个正根和一个负根的充要条件是ac<0.思路探究:分清充分性与必要性,理清证明方向.
    归纳提升:充要条件的证明思路证明充要条件时要从充分性和必要性两个方面分别证明.以证明“p成立的充要条件为q”为例.(1)充分性:把q当作已知条件,结合命题的前提条件,推出p;(2)必要性:把p当作已知条件,结合命题的前提条件,推出q.证明的关键是分清哪个是条件,哪个是结论,然后确定推出方向,至于先证明充分性还是先证明必要性则无硬性要求.
    2.已知关于x的方程ax2+bx+c=0(※),判断a+b+c=0是否是方程(※)有一个根为1的充要条件.证明:因为a+b+c=0,所以c=-a-b,代入方程ax2+bx+c=0中,得ax2+bx-a-b=0,即(x-1)(ax+a+b)=0.所以方程(※)有一个根为1,所以a+b+c=0⇒方程(※)有一个根为1,
    因为方程ax2+bx+c=0有一个根为1,所以x=1满足方程ax2+bx+c=0.所以有a×12+b×1+c=0,即a+b+c=0.所以方程(※)有一个根为1⇒a+b+c=0,从而a+b+c=0⇔方程(※)有一个根为1,因此a+b+c=0是方程(※)有一个根为1的充要条件.
    若p:0

    相关课件

    高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件图片课件ppt:

    这是一份高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件图片课件ppt,共14页。PPT课件主要包含了学习新知,①认清条件和结论,①可先简化命题,应用新知,充分不必要条件,必要不充分条件,既不充分也不必要条件,真命题,课本第20页第1题,课本第20页第2题等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件多媒体教学ppt课件:

    这是一份高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件多媒体教学ppt课件,共14页。PPT课件主要包含了实例情境,什么是命题,3对顶角相等,充分条件与必要条件,p是q的充分条件,p不是q的充分条件,课本P10练习,q是p的必要条件,q不是p的必要条件,互为充要等内容,欢迎下载使用。

    人教A版 (2019)必修 第一册第一章 集合与常用逻辑用语1.4 充分条件与必要条件授课课件ppt:

    这是一份人教A版 (2019)必修 第一册第一章 集合与常用逻辑用语1.4 充分条件与必要条件授课课件ppt,共32页。PPT课件主要包含了目标认知,真命题,假命题,若p则q,如果p那么q,命题的条件,命题的结论,充分条件,必要条件,不唯一等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map