2025高考数学一轮复习-6.5-高考中数列问题的热点题型-专项训练模拟练习【含解析】
展开
这是一份2025高考数学一轮复习-6.5-高考中数列问题的热点题型-专项训练模拟练习【含解析】,共9页。
1.记Sn为等差数列{an}的前n项和,已知a2=11,S10=40.
(1)求{an}的通项公式;
(2)求数列{|an|}的前n项和Tn.
2.已知等差数列{an}中,a1=1,前n项和为Sn,{bn}为各项均为正数的等比数列,b1=2,且b2+S2=7,a2+b3=10.
(1)求an与bn;
(2)定义新数列{cn}满足cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(an,n为奇数,bn,n为偶数))(n∈N*),求{Cn}前20项的和T20.
3.已知等差数列{an}的前n项和为Sn,公差d≠0,S2,S4,S5+4成等差数列,a2,a4,a8成等比数列.
(1)求Sn;
(2)记数列{bn}的前n项和为Tn,2bn-Tn=eq \f(n+2,Sn),证明:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn-\f(1,Sn)))为等比数列,并求{bn}的通项公式.
4.设eq \b\lc\{\rc\}(\a\vs4\al\c1(an))是首项为1的等比数列,数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))满足bn=eq \f(nan,3).已知a1,3a2,9a3成等差数列.
(1)求eq \b\lc\{\rc\}(\a\vs4\al\c1(an))和eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的通项公式;
(2)记Sn和Tn分别为eq \b\lc\{\rc\}(\a\vs4\al\c1(an))和eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和.证明:Tn
相关试卷
这是一份2025高考数学一轮复习-6.4-数列求和-专项训练模拟练习【含解析】,共11页。
这是一份2025高考数学二轮专题复习-高考中三角函数综合问题的热点题型-专项训练【含解析】,共11页。
这是一份2025高考数学一轮复习-概率统计与数列、函数的交汇问题-专项训练【含解析】,共6页。