资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
所属成套资源:北师大版数学八年级下册同步讲义 (2份,原卷版+解析版)
成套系列资料,整套一键下载
北师大版(2024)八年级下册1 因式分解课时作业
展开这是一份北师大版(2024)八年级下册1 因式分解课时作业,文件包含北师大版数学八年级下册同步讲义第四章第02讲特殊的因式分解法5类题型讲练原卷版docx、北师大版数学八年级下册同步讲义第四章第02讲特殊的因式分解法5类题型讲练解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
目录
TOC \ "1-3" \h \u \l "_Tc15341" 【考点一 利用整体法提公因式因式分解】 PAGEREF _Tc15341 \h 1
\l "_Tc27334" 【考点二 因式分解要彻底分解】 PAGEREF _Tc27334 \h 3
\l "_Tc10963" 【考点三 十字相乘法因式分解】 PAGEREF _Tc10963 \h 6
\l "_Tc20497" 【考点四 分组分解法因式分解】 PAGEREF _Tc20497 \h 12
\l "_Tc3736" 【考点五 因式分解的应用】 PAGEREF _Tc3736 \h 15
【考点一 利用整体法提公因式因式分解】
例题:(2024上·四川眉山·八年级统考期末)分解因式: .
【变式训练】
1.(2023上·湖南衡阳·八年级校考期末)把式子分解因式,结果是
2.(2023下·全国·八年级假期作业)因式分解: .
3.(2023上·陕西延安·八年级校考阶段练习)因式分解:.
4.(2023上·上海青浦·七年级校考期中)因式分解:
5.(2023上·八年级课时练习)分解因式:
(1).
(2).
【考点二 因式分解要彻底分解】
例题:(2023秋·辽宁沈阳·八年级校考期末)因式分解
(1) (2)
【变式训练】
1.(2023春·全国·七年级专题练习)因式分解:.
2.(2023秋·吉林长春·八年级统考期末)因式分解
(1) (2)
3.(2023春·四川成都·八年级成都市第二十中学校校考阶段练习)分解因式:
(1); (2).
4.(2023秋·湖南永州·七年级统考期末)因式分解
(1) (2)
5.(2023秋·上海静安·七年级新中初级中学校考期末)因式分解:
(1); (2)
6.(2023秋·山东滨州·八年级统考期末)分解因式.
(1); (2).
【考点三 十字相乘法因式分解】
例题:(2024上·北京东城·八年级统考期末)利用整式的乘法运算法则推导得出:.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得.通过观察可把看作以x为未知数,a、b、c、d为常数的二次三项式,此种因式分解是把二次三项式的二项式系数与常数项分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式的二项式系数2与常数项12分别进行适当的分解,如图2,则.
根据阅读材料解决下列问题:
(1)用十字相乘法分解因式:;
(2)用十字相乘法分解因式:;
(3)结合本题知识,分解因式:.
【变式训练】
1.(2023上·全国·八年级专题练习)十字相乘法分解因式:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
2.(2023下·广西北海·七年级统考期中)阅读理解:用“十字相乘法”因式分解
例如:求:
(1)
(2)
3.(2022上·湖北恩施·八年级校考期中)阅读与思考:我们知道,整式乘法计算:,反过来,即为因式分解.通过观察发现:这个等式可以写成,一般地,可以归纳为:,例如,分解因式:,
请仔细阅读以上内容并完成下面练习:分解因式:
(1)
(2)
(3)
4.(2023下·湖南岳阳·七年级统考期末)阅读理解:用“十字相乘法”分解因式的方法(如图).
第一步:二次项;
第二步:常数项,画“十字图”验算“交叉相乘之和”;
第三步:发现第③个“交叉相乘之和”的结果等于一次项.
即.
像这样,通过画“十字图”,把二次三项式分解因式的方法,叫做“十字相乘法”.
运用结论:
(1)将多项式进行因式分解,可以表示为_______________;
(2)若可分解为两个一次因式的积,请画好“十字图”,并求整数的所有可能值.
【考点四 分组分解法因式分解】
例题:(2023上·辽宁鞍山·八年级统考期中)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为.此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:
(1)因式分解:;
(2)已知,求的值.
【变式训练】
1.(2024上·山西长治·八年级统考期末)阅读下列材料,并完成相应的任务.
任务:
(1)因式分解:
(2)已知,,求的值.
2.(2023上·全国·八年级专题练习)阅读下列文字与例题:
将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解.
例如:以下两个式子的分解因式的方法就称为分组分解法.
①;
②
试用上述方法分解因式:
(1);
(2).
3.(2023上·全国·八年级专题练习)八年级课外兴趣小组活动时,老师提出了如下问题:将因式分解.经过小组合作交流,得到了如下的解决方法:
解法一:原式
解法二:原式
小明由此体会到,对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法等方法达到因式分解的目的.这种方法可以称为分组分解法.(温馨提示:因式分解一定要分解到不能再分解为止)
请你也试一试利用分组分解法进行因式分解:
(1)因式分解:;
(2)因式分解:.
【考点五 因式分解的应用】
例题:(2023下·四川达州·八年级统考期末)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、添项拆项法、十字相乘法等等.
①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.
例如:
②十字相乘法:十字相乘法能用于二次三项式的分解因式.
分解步骤:
1.分解二次项,所得结果分别写在十字交叉线的左上角和左下角;
2.分解常数项,所得结果分别写在十字交叉线的右上角和右下角;
3.交叉相乘,求代数和,使其等于一次项;
4.观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法.
例如: 分析:
观察得出:两个因式分别为与
解:原式
③添项拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.
例如:.
(1)仿照以上方法,按照要求分解因式:
①(分组分解法)______;
②(十字相乘法)______;
(2)已知:a、b、c为的三条边,,判断的形状.
【变式训练】
1.(2024上·山东东营·八年级统考期末)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,2,,,,分别对应下列六个字:华、我、爱、美、游、中,现将因式分解,结果呈现的密码信息可能是( )
A.爱我中华B.我游中华C.中华美D.我爱美
2.(2024·全国·八年级竞赛)已知,则的值( ).
A.一定是负数B.一定是正数C.一定不是正数D.不能确定
3.(2024上·湖北恩施·八年级统考期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式,因式分解的结果是,若取,,则各个因式的值是:,,,于是就可以把“018162”作为一个六位数的密码.对于多项式,取,,用上述方法产生的密码不可能是( )
A.528024B.522824C.248052D.522480
4.(2024上·河南商丘·八年级统考期末)[阅读材料]
将四项及四项以上的多项式进行因式分解,我们一般使用分组分解法.分组分解法有两种分法:一是“”分组.二是“”分组.两种分组的主要区别就在于多项式中是否存在三项可以构成完全平方,若可以构成完全平方,则采用“”分组;若无法构成,则采用“”分组.
例如:;
.
[应用知识]
(1)因式分解:.
(2)因式分解:.
[拓展应用]
(3)已知一三角形的三边长分别是,且满足:.试判断这个三角形的形状,并说明理由.
5.(2024上·广东汕头·八年级校联考期末)阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做配方法,运用配方法及平方差公式能对一些多项式进行因式分解.
例如:.
即:.
根据以上材料,解答下列问题:
(1)因式分解:;
(2)已知,,是的三边长,且满足,求的最长边的取值范围;
(3)已知,,是的三边长,且满足,求的周长.
数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可以提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,其过程如下:.
此种因式分解的方法叫做“分组分解法”.
相关试卷
初中北师大版(2024)2 平行四边形的判定课时训练:
这是一份初中北师大版(2024)2 平行四边形的判定课时训练,文件包含北师大版数学八年级下册同步讲义第六章第02讲平行四边形的判定6类题型讲练原卷版docx、北师大版数学八年级下册同步讲义第六章第02讲平行四边形的判定6类题型讲练解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
数学八年级下册2 分式的乘除法随堂练习题:
这是一份数学八年级下册2 分式的乘除法随堂练习题,文件包含北师大版数学八年级下册同步讲义第五章第02讲分式的乘除法6类题型讲练原卷版docx、北师大版数学八年级下册同步讲义第五章第02讲分式的乘除法6类题型讲练解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
北师大版(2024)八年级下册1 认识分式测试题:
这是一份北师大版(2024)八年级下册1 认识分式测试题,文件包含北师大版数学八年级下册同步讲义第五章第01讲认识分式13类题型讲练原卷版docx、北师大版数学八年级下册同步讲义第五章第01讲认识分式13类题型讲练解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。