|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】01
    2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】02
    2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】

    展开
    这是一份2024-2025学年江苏省苏州市常熟市数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
    A.B.C.D.
    2、(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
    A.15°B.30°C.45°D.60°
    3、(4分)下列命题中,原命题和逆命题都是真命题的个数是( )
    ①两条对角线互相平分的四边形是平行四边形;
    ②两条对角线相等的四边形是矩形;
    ③菱形的两条对角线成互相垂直平分;
    ④两条对角线互相垂直且相等的四边形是正方形.
    A.4B.3C.2D.1
    4、(4分)在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为( )
    A.﹣3B.﹣5C.7D.﹣3或﹣5
    5、(4分) 某班五个课外小组的人数分布如图所示,若绘制成扇形统计图,则第二小组在扇形统计图中对应的圆心角度数是( )
    A.45°B.60°C.72°D.120°
    6、(4分)某市五月份连续五天的日最高气温分别为33、30、31、31、29(单位:ºC),这组数据的众数是( )
    A.29B.30C.31D.33
    7、(4分)若线段2a+1,a,a+3能构成一个三角形,则a的范围是( )
    A.a>0B.a>1C.a>2D.1<a<3
    8、(4分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y与x的关系如图所示,则下列说法正确的是( )
    A.甲港与丙港的距离是90kmB.船在中途休息了0.5小时
    C.船的行驶速度是45km/hD.从乙港到达丙港共花了1.5小时
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分) 如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.
    10、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
    11、(4分)一组数据2,3,4,5,3的众数为__________.
    12、(4分)若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.
    13、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,在平行四边形中,于,于,若,,,求平行四边形的周长.
    15、(8分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
    16、(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
    (1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
    (2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
    17、(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
    (1)求证:AE=DF;
    (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
    (3)当t为何值时,△DEF为直角三角形?请说明理由.
    18、(10分)(1)解不等式.
    (2)解方程.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
    20、(4分)因式分解:______ .
    21、(4分)化简的结果是______.
    22、(4分)在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.
    23、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) 我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
    (1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
    ②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
    (2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
    25、(10分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.
    (1)求证:;
    (2)若,则__________.
    26、(12分)如图,在平面直角坐标系中,的三个顶点分别是、、.
    (1)画出关于点成中心对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;
    (2)△和△关于某一点成中心对称,则对称中心的坐标为 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据等边三角形的性质和平移的性质即可得到结论.
    【详解】
    解:∵△OAB是等边三角形,
    ∵B的坐标为(2,0),
    ∴A(1,),
    ∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
    ∴A′的坐标(4,),
    故选:D.
    本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
    2、A
    【解析】
    先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
    【详解】
    ∵等边三角形ABC中,AD⊥BC,
    ∴BD=CD,即:AD是BC的垂直平分线,
    ∵点E在AD上,
    ∴BE=CE,
    ∴∠EBC=∠ECB,
    ∵∠EBC=45°,
    ∴∠ECB=45°,
    ∵△ABC是等边三角形,
    ∴∠ACB=60°,
    ∴∠ACE=∠ACB-∠ECB=15°,
    故选A.
    此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
    3、C
    【解析】
    分别写出各个命题的逆命题,然后对原命题和逆命题分别进行判断即可.
    【详解】
    解:①两条对角线互相平分的四边形是平行四边形,为真命题;其逆命题为平行四边形的对角线互相平分,为真命题;
    ②两条对角线相等的四边形是矩形,为假命题;逆命题为:矩形的对角线相等,是真命题;
    ③菱形的两条对角线互相垂直平分,为真命题;逆命题为:对角线互相垂直平分的四边形是菱形,为真命题;
    ④两条对角线互相垂直且相等的四边形是正方形,为假命题;其逆命题为:正方形的对角线互相垂直且相等,为真命题,
    故选:C.
    本题考查命题与定理的知识,解题的关键是能够写出该命题的逆命题.
    4、A
    【解析】
    分三种情形讨论求解即可解决问题;
    【详解】
    解:对于函数y=|x﹣a|,最小值为a+1.
    情形1:a+1=0,
    a=﹣1,
    ∴y=|x+1|,此时x=﹣1时,y有最小值,不符合题意.
    情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+1,得到a=﹣2.
    ∴y=|x+2|,符合题意.
    情形2:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+1,方程无解,此种情形不存在,
    综上所述,a=﹣2.
    故选A.
    本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.
    5、D
    【解析】
    根据条形统计图即可得第二小组所占总体的比值,再乘以360°即可.
    【详解】
    解:第二小组在扇形统计图中对应的圆心角度数是360°×=120°,
    故选D.
    本题考查的是条形统计图和扇形统计图的知识,难度不大,属于基础题型,明确求解的方法是解题的关键.
    6、C
    【解析】
    根据众数的概念:一组数据中出现次数最多的数据为这组数据的众数即可得出答案.
    【详解】
    根据众数的概念可知,31出现了2次,次数最多,
    ∴这组数据的众数为31,
    故选:C.
    本题主要考查众数,掌握众数的概念是解题的关键.
    7、B
    【解析】
    根据三角形三边关系:任意两边之和大于第三边列出不等式组,解不等式组即可得出a的取值范围.
    【详解】
    解:由题意,得,
    解得a>1.
    故选B.
    8、D
    【解析】
    由船行驶的函数图象可以看出,船从甲港出发,0.5h后到达乙港,ah后到达丙港,进而解答即可.
    【详解】
    解:A、甲港与丙港的距离是30+90=120km,错误;
    B、船在中途没有休息,错误;
    C、船的行驶速度是,错误;
    D、从乙港到达丙港共花了小时,正确;
    故选D.
    此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(16,8).
    【解析】
    过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.
    【详解】
    解:过A、C作AE⊥x轴,CF⊥x轴,
    ∵点A的坐标是(6,8),
    ∴AO=10,
    ∵四边形AOBC是菱形,
    ∴AO=AC=BO=BC=10,AO∥BC,
    ∴∠AOB=∠CBF,
    ∵AE⊥x轴,CF⊥x轴,
    ∴∠AEO=∠CFO=90°,
    在△AOE和△CBF中

    ∴△AOE≌△CBF(AAS),
    ∴EO=BF=6,
    ∵BO=10,
    ∴FO=16,
    ∴C(16,8).
    故答案为:(16,8).
    此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形四边相等.
    10、0.3
    【解析】
    根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
    【详解】
    解:∵第1、2、3、4组的频数分别是2、8、10、15,
    ∴50-2-8-10-15=15
    ∴15÷50=0.3
    故答案为0.3.
    此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
    11、1.
    【解析】
    众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
    【详解】
    本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
    故答案为1.
    众数是指一组数据中出现次数最多的数据.
    12、9
    【解析】
    设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.
    【详解】
    设多边形的边数为n,由题意得
    (n-2)·180°=900°
    解得n=7,
    则它的边长是63÷7=9.
    本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.
    13、1
    【解析】
    根据菱形的面积等于对角线积的一半,即可求得其面积.
    【详解】
    ∵菱形ABCD的两条对角线长分别为6和4,
    ∴其面积为4×6=1.
    故答案为:1.
    此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
    三、解答题(本大题共5个小题,共48分)
    14、20
    【解析】
    在直角三角形AFB中,知道∠A=60°,AF=3,可求出AB的长,同理在Rt△BEC中,可求出BC,因为平行四边形对边相等,即可求出周长.
    【详解】
    解:在中,,,,
    ,,
    同理在中,,
    在平行四边形中,
    ,,
    平行四边形的周长为
    本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.
    15、见解析.
    【解析】
    根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
    【详解】
    解:如图所示.
    连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
    本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
    16、画图见解析.
    【解析】
    【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
    (2)结合网格特点以及中心对称图形的定义按要求作图即可得.
    【详解】(1)如图所示(答案不唯一);
    (2)如图所示(答案不唯一).
    【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
    17、(1)见解析;(2)能,t=10;(3)t=或12.
    【解析】
    (1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
    (2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
    (3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.
    【详解】
    解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,
    ∴AB=AC=×60=30cm,
    ∵CD=4t,AE=2t,
    又∵在Rt△CDF中,∠C=30°,
    ∴DF=CD=2t,∴DF=AE;
    (2)能,
    ∵DF∥AB,DF=AE,
    ∴四边形AEFD是平行四边形,
    当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,
    ∴当t=10时,AEFD是菱形;
    (3)若△DEF为直角三角形,有两种情况:
    ①如图1,∠EDF=90°,DE∥BC,
    则AD=2AE,即60﹣4t=2×2t,解得:t=,
    ②如图2,∠DEF=90°,DE⊥AC,
    则AE=2AD,即,解得:t=12,
    综上所述,当t=或12时,△DEF为直角三角形.
    18、
    【解析】
    (1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1),
    由①得:,
    由②得:,
    则不等式组的解集为;
    (2)去分母得:,
    解得:,
    经检验是分式方程的解.
    此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    由S△BOE+S△COE=S△BOC即可解决问题.
    【详解】
    连接OE.
    ∵四边形ABCD是正方形,AC=10,
    ∴AC⊥BD,BO=OC=1,
    ∵EG⊥OB,EF⊥OC,
    ∴S△BOE+S△COE=S△BOC,
    ∴•BO•EG+•OC•EF=•OB•OC,
    ∴×1×EG+×1×EF=×1×1,
    ∴EG+EF=1.
    故答案为1.
    本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
    20、
    【解析】
    首先把公因式3提出来,然后按照完全平方公式因式分解即可.
    【详解】
    解:
    =
    =
    故答案为:.
    此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.
    21、
    【解析】
    根据分式的减法和乘法可以解答本题.
    【详解】
    解:
    ,
    故答案为:
    本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.
    22、
    【解析】
    根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.
    【详解】
    根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k−3>0,
    解得k>3.
    故答案为:k>3
    此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>0
    23、 (,)
    【解析】
    试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).
    考点:一次函数图象与x轴的交点
    二、解答题(本大题共3个小题,共30分)
    24、(1)①;②1;(2)AD=BC.
    【解析】
    (1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;
    ②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;
    (2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.
    【详解】
    (1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.
    ∵DB'=DC',∴AD⊥B'C'.
    ∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.
    故答案为.
    ②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.
    ∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.
    ∵B'D=DC',∴ADB'C'BC=1.
    故答案为1.
    (2)结论:ADBC.
    理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.
    ∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.
    ∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.
    ∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.
    本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    25、(1)见解析;(2)75°
    【解析】
    (1)证明Rt△ABE≌Rt△CBF,即可得到结论;
    (2)由Rt△ABE≌Rt△CBF证得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四点共圆,根据圆周角定理得到∠BGF=∠BEF=45°即可求出答案.
    【详解】
    (1)∵,
    ∴∠CBF=,
    在Rt△ABE和Rt△CBF中,

    ∴Rt△ABE≌Rt△CBF,
    ∴BE=BF;
    (2)∵BE=BF,∠CBF=90°,
    ∴∠BFE=∠BEF=45°,
    ∵Rt△ABE≌Rt△CBF,
    ∴∠BEA=∠BFC,
    ∵∠BEA+∠BAE=90°,
    ∴∠BFC+∠BAE=90°,
    ∴∠AGF=90°,
    ∵∠AEB+∠BEG=180°,
    ∴∠BEG+∠BFG=180°,
    ∵∠AGF+∠FBC=180°,
    ∴B、E、G、F四点共圆,
    ∵BE=BF,
    ∴∠BGF=∠BEF=45°,
    ∵∠GBF=60°,
    ∴∠GFB=180°-∠GBF-∠BGF=75°,
    故答案为:75°.
    此题考查全等三角形的判定与性质,等腰三角形的性质,四点共圆的判定,三角形的内角和定理,证明四点共圆是解此题的关键.
    26、 (1)画图见解析;(2)(2,-1).
    【解析】
    试题分析:(1)、根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.
    试题解析:(1)、△A1B1C如图所示, △A2B2C2如图所示; (2)、如图,对称中心为(2,﹣1).
    考点:(1)、作图-旋转变换;(2)、作图-平移变换.
    题号





    总分
    得分
    相关试卷

    2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省苏州常熟市数学九上开学质量检测试题【含答案】: 这是一份2024-2025学年江苏省苏州常熟市数学九上开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省江都区黄思中学苏科版九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年江苏省江都区黄思中学苏科版九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map