2024-2025学年江苏省常熟市九上数学开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一棵大树在离地面9米高的处断裂,树顶落在距离树底部12米的处(米),则大树断裂之前的高度为( )
A.9米B.10米C.21米D.24米
2、(4分)如图,已知△ABC 的周长为 20cm,现将△ABC 沿 AB 方向平移2cm 至△A′B′C′的位置,连结 CC′.则四边形 AB′C′C 的周长是( )
A.18cmB.20cmC.22cmD.24cm
3、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
A.4+2B.7+C.12D.10
4、(4分)若=x﹣5,则x的取值范围是( )
A.x<5B.x≤5C.x≥5D.x>5
5、(4分)下列四个图形是中心对称图形的是( )
A. B. C. D.
6、(4分)一个多边形的每个外角都等于45°,则这个多边形的边数是( )
A.11B.10C.9D.8
7、(4分)下列对一次函数y=﹣2x+1的描述错误的是( )
A.y随x的增大而减小
B.图象经过第二、三、四象限
C.图象与直线y=2x相交
D.图象可由直线y=﹣2x向上平移1个单位得到
8、(4分)新定义,若关于x的一元二次方程:与,称为“同族二次方程”.如与是“同族二次方程”.现有关于x的一元二次方程:与是“同族二次方程”.那么代数式能取的最小值是( )
A.2011B.2013C.2018D.2023
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y=2x+3向下平移2个单位,得直线_____.
10、(4分)当__________时,分式的值等于零.
11、(4分)当a=______时,最简二次根式与是同类二次根式.
12、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.
13、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)取一张长与宽之比为的长方形纸板,剪去四个边长为的小正方形(如图),并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为(纸板的厚度略去不计),这张长方形纸板的长与宽分别为多少厘米?
15、(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;
16、(8分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.
(1)若OA=8,求k的值;
(2)若CB=BD,求点C的坐标.
17、(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:
①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE= .
②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.
18、(10分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
20、(4分)直线向下平移2个单位长度得到的直线是__________.
21、(4分)如图,矩形ABCD中,点 E、F 分别在AB、CD上,EF∥BC,EF交BD于点G.若EG=5,DF=2,则图中两块阴影部分的面积之和为______.
22、(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.
23、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 ;
(3)若该市约有120万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
25、(10分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:
甲:394,400,408,406,410,409,400,400,393,395
乙:402,404,396,403,402,405,397,399,402,398
整理数据:
表一
分析数据:
表二
得出结论:
包装机分装情况比较好的是______(填甲或乙),说明你的理由.
26、(12分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据勾股定理列式计算即可.
【详解】
由题意可得:,
AB+BC=15+9=1.
故选D.
本题考查勾股定理的应用,关键在于熟练掌握勾股定理的公式.
2、D
【解析】
根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.
【详解】
解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,
∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.
本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
3、D
【解析】
根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
【详解】
∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中点,
∴BD=AB=3,
∴DE是△ABC的中位线,
∴DE=AC=3,
∴△BDE的周长为BD+DE+BE=3+3+4=1.
故选:D.
本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
4、C
【解析】
因为=-a(a≤0),由此性质求得答案即可.
【详解】
∵=x-1,
∴1-x≤0
∴x≥1.
故选C.
此题考查二次根式的性质:=a(a≥0),=-a(a≤0).
5、D
【解析】
如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形.
根据中心对称图形的概念结合各图形的特点求解.
【详解】
解:A.不是中心对称图形,本选项不符合题意;
B不.是中心对称图形,本选项不符合题意;
C.不是中心对称图形,本选项不符合题意;
D.是中心对称图形,本选项符合题意.
故选D.
本题考查的是中心对称的概念,属于基础题.
6、D
【解析】
根据多边形的外角和等于,用360除以一个多边形的每个外角的度数,求出这个多边形的边数是多少即可.
【详解】
解:,
这个多边形的边数是1.
故选:D.
此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于.
7、B
【解析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.
详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;
∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;
∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.
故选B.
点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.
8、B
【解析】
根据同族二次方程的定义,可得出a和b的值,从而解得代数式的最小值.
【详解】
解:与为同族二次方程.
,
,
∴,
解得:.
,
当时,取最小值为2013.
故选:B.
此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x+1.
【解析】
根据“左加右减,上加下减”的平移规律可得:将直线y=-2x+3先向下平移3个单位,得到直线y=-2x+3-2,即y=-2x+1.
故答案是:y=﹣2x+1.
10、-2
【解析】
令分子为0,分母不为0即可求解.
【详解】
依题意得x2-4=0,x-2≠0,解得x=-2,
故填:-2.
此题主要考查分式的值,解题的关键是熟知分式的性质.
11、1.
【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
【详解】
解: ∵最简二次根式与是同类二次根式,
∴a﹣2=10﹣2a, 解得:a=1
故答案为:1.
本题考查同类二次根式.
12、
【解析】
过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.
【详解】
解:如图,过D作DF⊥AB于F,
∵AD平分∠BAC,∠C=90°,
∴DF=CD=2.
∵Rt△ABC中,∠C=90°,AC=BC,
∴∠ABC=45°,
∴△BDF是等腰直角三角形,
∵BF=DF=2,BD=DF=2,
∴BC=CD+BD=2+2,AC=BC=2+2.
∵AE//BC,BE⊥AD,
∴四边形ADBE是平行四边形,
∴AE=BD=2,
∴平行四边形ADBE的面积= .
故答案为.
本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.
13、8.
【解析】
已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
【详解】
∵直线y=x+8与x轴、y轴分别交于A,B两点,
∴当x=0时,y=8;当y=0时,x=8,
∴点A、B的坐标分别为:(8 ,0)、(0,8),
∵C是OB的中点,
∴点C(0,4),
∴菱形的边长为4,则DE=4=DC,
设点D(m,m+8),则点E(m,m+4),
则CD2=m2+(m+8﹣4)2=16,
解得:m=2,
故点E(2,2),
S△OAE= ×OA×yE=×8×2=8 ,
故答案为8.
本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、长为30厘米,宽为12厘米
【解析】
设该长方形纸板的长为,宽为,根据题意列出一元二次方程即可进行求解.
【详解】
解:设该长方形纸板的长为,宽为,
根据题意得:,即,
解得:,(不合题意舍去),
∴,.
答:这张长方形纸板的长为30厘米,宽为12厘米
此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.
15、 (1)见解析;(2)见解析;菱形ABEF的面积为8.
【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;
(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.
【详解】
(1)如图1所示,平行四边形ABCD即为所求;
(2)如图2所示,菱形ABCD为所求,
菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.
本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.
16、(1)1;(2)(3,2)
【解析】
(1) 过C作CM⊥AB,CN⊥y轴,利用勾股定理求出CM的长,结合OA的长度,则C点坐标可求,因C在图象上,把C点代入反比例函数式求出k即可;
(2)已知CB=BD,则AD长可求,设OA=a, 把C、D点坐标用已知数或含a的代数式表示,因C、D都在反比例函数图象上,把C、D坐标代入函数式列式求出a值即可.
【详解】
(1)解:过C作CM⊥AB,CN⊥y轴,垂足为M、N,
∵CA=CB=5,AB=6,
∴AM=MB=3=CN,
在Rt△ACD中,CD= =4,
∴AN=4,ON=OA﹣AN=8﹣4=4,
∴C(3,4)代入y= 得:k=1,
答:k的值为1.
(2)解:∵BC=BD=5,
∴AD=6﹣5=1,
设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)
∵点C、D在反比例函数的图象上,
∴3(a﹣4)=1×a,
解得:a=6,
∴C(3,2)
答:点C的坐标为(3,2)
本题主要考查反比例函数的几何应用,解题关键在于能够做出辅助线,利用勾股定理解题.
17、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.
【解析】
(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.
【详解】
(1)证明:如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)证明:如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB﹣BE=12﹣4=8,
设DF=x,则AD=12﹣x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,
解得:x=2.
则DE=4+2=4.
故答案是:4;
②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,
则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.
在直角△BCF中,BC2=BF2+FC2,
则(2+x)2=42+x2,
解得:x=4.
则BC=2+4=5,
则△ABC的面积是:AD•BC=×2×5=1.
本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
18、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.
【解析】
试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.
试题解析:
解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.
由题意得:,
解得:
答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分
当一名熟练工一个月加工型服装件时,则还可以加工型服装件.
又∵≥,解得:≥
,随着的增大则减小
∴当时,有最大值.
∴该服装公司执行规定后违背了广告承诺. .
考点:方程组,函数应用
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4cm
【解析】
根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AO=OC,OD=OB,
又∵AC=10cm,BD=6cm,
∴AO=5cm,DO=3cm,
本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.
20、
【解析】
根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.
【详解】
解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1
故答案为:y=1x-1
本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.
21、1.
【解析】
由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.
【详解】
解:如图,过点G作MN⊥AD于M,交BC于N,
∵EG=5,DF=2,
∴S△AEG=×5×2=5
∵AD∥BC,MN⊥AD
∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,
易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形
∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,
∴S四边形AEGM=S四边形GFCN,
∴S△AEG=S△FGC=5
∴两块阴影部分的面积之和为1.
故答案为:1.
本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.
22、x<1
【解析】
解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1.故答案为x<1.
23、1
【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.
【详解】
解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.
本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) 400,100;(2) 36°;(3) 81.6万人
【解析】
(1)由等级C的人数除以占的百分比,得出调查总人数即可,进而确定出等级B与等级D的人数,进而求出m与n的值;
(2)由D占的百分比,乘以360即可得到结果;
(3)根据题意列式计算即可得到结论.
【详解】
解:(1)m=140÷14%×40%=400;n=140÷14%﹣280﹣400﹣140﹣80=100;
条形统计图如下:
故答案为:400,100;
(2)扇形统计图中“D”所对应的圆心角的度数是 ×360°=36°;
故答案为:36°;
(3) ×120=81.6万人,
答:其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数81.6万人
此题考查统计表,扇形统计图,条形统计图,解题关键在于看懂图中数据
25、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.
【解析】
整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.
【详解】
整理数据:
表一中,
甲组:393≤x<396的有3个,405≤x<408的有1个;
乙组:402≤x<405的有5个;
故答案为:3,1,5;
分析数据:
表二中,
甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,
中位数为中间两个数据的平均数==400,
乙组:出现次数最多的数据是402,
∴众数是402;
故答案为:400,402;
得出结论:
包装机分装情况比较好的是乙;理由如下:
由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,
所以包装机分装情况比较好的是乙.
故答案为:乙(答案不唯一,合理即可).
本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.
26、证明见解析.
【解析】
由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.
【详解】
证明:四边形是平行四边形,
∴,.
∵,
∴.
∴,
∵,,
∴四边形是平行四边形.
本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.
题号
一
二
三
四
五
总分
得分
批阅人
组别
获取新闻的最主要途径
人数
A
电脑上网
280
B
手机上网
m
C
电视
140
D
报纸
n
E
其它
80
频数种类
质量()
甲
乙
____________
0
0
3
3
1
0
____________
____________
1
3
0
种类
甲
乙
平均数
401.5
400.8
中位数
____________
402
众数
400
____________
方差
36.85
8.56
2024-2025学年江苏省常熟市第三中学数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年江苏省常熟市第三中学数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】: 这是一份2024-2025学年吉林省长春市德惠市九上数学开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省黄冈实验中学九上数学开学预测试题【含答案】: 这是一份2024-2025学年湖北省黄冈实验中学九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。