


2024-2025学年江苏省常熟市第三中学数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中,一定是二次根式的是
A.B.C.D.
2、(4分)已知x=,y=,则x2+xy+y2的值为( )
A.2B.4C.5D.7
3、(4分)已知a为整数,且<<,则a等于()
A.1B.2C.3D.4
4、(4分)一次函数不经过的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)在中,对角线相交于点,以点为坐标原点建立平面直角坐标系,其中,则点的坐标是( )
A.B.C.D.
7、(4分)如图,,,双曲线经过点,双曲线经过点,已知点的纵坐标为-2,则点的坐标为( )
A.B.
C.D.
8、(4分)下列命题的逆命题能成立的有( )
①两条直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④在角的内部,到角的两边距离相等的点在角的平分线上.
A.4个B.3个C.2个D.1个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在一只不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,这些球除颜色外都相同,将球搅匀,从袋子中任意摸出一个球,摸到_____球可能性最大.
10、(4分)如果两个最简二次根式与能合并,那么______.
11、(4分)已知是一次函数,则__________.
12、(4分)面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.
13、(4分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.
(1)求证:AB=EF;
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
15、(8分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD
(1)求AD的长;
(2)若∠C=30°,求CD的长.
16、(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
17、(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.
18、(10分)甲乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做300个所用的时间与乙做200个所用的时间相等,求甲乙两人每小时各做几个零件?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)
20、(4分)如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为_____,面积为_____.
21、(4分)实数a在数轴上的位置如图示,化简:_____.
22、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
23、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接BO和FO.
(1)当点E为AB中点时,求EO的长度;
(2)求线段AO的取值范围;
(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.
25、(10分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.
26、(12分)如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的定义进行判断.
【详解】
解:A.无意义,不是二次根式;
B.当时,是二次根式,此选项不符合题意;
C.是二次根式,符合题意;
D.不是二次根式,不符合题意;
故选C.
本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.
2、B
【解析】
试题分析:根据二次根式的运算法则进行运算即可.
试题解析:
.
故应选B
考点:1.二次根式的混合运算;2.求代数式的值.
3、D
【解析】
根据实数的估算即可求解.
【详解】
∵<<,=4
∴a=4
故选D.
此题主要考查实数的估算,解题的关键是熟知实数的性质.
4、A
【解析】
由于k=-1<0,b=-1,由此可以确定函数的图象经过的象限.
【详解】
∵y=-x-1,
∴k=-1<0,b=-1<0,
∴它的图象经过的象限是第二、三、四象限,不经过第一象限.
故选A.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
5、C
【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.
【详解】
A、不是轴对称图形,也不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,但不是中心对称图形.故此选项错误.
故选C.
考点:1、中心对称图形;2、轴对称图形
6、A
【解析】
画出图形,利用平行四边形的性质解答即可.
【详解】
解:如图:
∵在▱ABCD中,C(3,1),
∴A(-3,-1),
∴B(-4,1),
∴D(4,-1);
故选:A.
本题考查平行四边形的性质,解题的关键是利用平行四边形的性质解答.
7、A
【解析】
过点作轴于点,过点作延长线于点,交轴于点,证明,得到,,再根据B点坐标在上取出k的值.
【详解】
解析:过点作轴于点,过点作延长线于点,交轴于点.
∵
∴.
∴.
∵在上,
∴且,
∴,
∴.
∵,
∴.
∵在上,
∴,
解得,(舍).
∴.
本题考查了反比例函数的图象与性质,三线合一性质.通过构造全等三角形,用含的式子来表示点坐标,代入点坐标求得值.难度中等,计算需要仔细.
8、C
【解析】
写出各个命题的逆命题后判断真假即可.
【详解】
解:①两条直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;
②如果两个实数相等,那么它们的绝对值相等的逆命题是绝对值相等的两个实数相等,不成立;
③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,不成立;
④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角平分线上的点到角的两边的距离相等,成立,
成立的有2个,
故选:C.
考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、红.
【解析】
根据概率公式先求出红球、白球和黄球的概率,再进行比较即可得出答案.
【详解】
∵不透明的袋子中装有6个球,其中红球3个、白球2个、黄球1个,
∴从袋子中任意摸出一个球,摸到红球的概率是:=,摸到白球的概率是=,摸到黄球的概率是,
∴摸到红球的概率性最大;
故答案为:红.
此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率是解题关键.
10、1
【解析】
∵两个最简二次根式能合并,
∴ ,解得:a=1.
故答案为1.
11、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
12、84分
【解析】
根据加权平均数的计算公式进行计算,即可得出答案.
【详解】
根据题意得:
90×20%+80×40%+85×40%=84(分);
故答案为84分.
本题考查的是加权平均数,熟练掌握加权平均数的计算公式是解题的关键.
13、1.
【解析】
利用平移的性质得到AE=CF,AE∥CF,BE=DF,BE∥DF,则可判断四边形AEFC和四边形BEFD都为平行四边形,然后根据平行四边形的面积公式,利用平移过程中扫过的面积=S▱AEFC+S▱BEFD进行计算.
【详解】
∵平移折线AEB,得到折线CFD,
∴AE=CF,AE∥CF,BE=DF,BE∥DF,
∴四边形AEFC和四边形BEFD都为平行四边形,
∴平移过程中扫过的面积=S▱AEFC+S▱BEFD=1×3+1×3=1.
故答案为:1.
此题考查平移的性质:对应边平行(或在同一直线上)且相等,平行四边形的判定定理.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)四边形ABEF为平行四边形,理由见解析.
【解析】
(1)利用AAS证明,再根据全等三角形的性质可得;
(2)首先根据全等三角形的性质可得,再根据内错角相等两直线平行可得到,又,可证出四边形为平行四边形.
【详解】
证明:,
,
,
,
即,
在与中
,
≌,
;
猜想:四边形ABEF为平行四边形,
理由如下:由知≌,
,
,
又,
四边形ABEF为平行四边形.
此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明.
15、 (1) 2;(2)
【解析】
分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H. 由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.
详解:(1)AD∥BC,AE∥CD,
∴四边形AFCD是平行四边形
∴AD=CF
∵AF平分∠BAD
∴∠BAF=∠DAF
∵AD∥BC
∴∠DAF=∠AFB
∴∠BAF=∠AFB
∴AB=BF
∵AB=3,BC=5
∴BF=3
∴FC=5-3=2
∴AD=2.
(2)如图,
过点B作BH⊥AF交AF于H
由(1)得:四边形AFCD为平行四边形且AB=BF=3,
∴AF=CD,AF∥CD
∴FH=AH,∠AFB=∠C
∵∠C=30°
∴∠HFB=30°
∴BF=2BH
∵BF=3
∴BH=
∴FH=,
∴AF=2×=3
∴CD=3.
点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.
16、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
17、的长为15米
【解析】
设AB=xm,列方程解答即可.
【详解】
解:设AB=xm,则BC=(50-2x)m,
根据题意可得,,
解得:,
当时,,
故(不合题意舍去),
答:的长为15米.
此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.
18、甲每小时做15个零件,乙每小时做10个零件.
【解析】
设甲每小时做x个零件,则乙每小时做x-5个零件,根据“甲做300个所用的时间与乙做200个所用的时间相等”列出方程并解答.
【详解】
设甲每小时做个零件
则乙每小时做个零件
根据题意得
解得:
经检验,是分式方程的解
∴
答:甲每小时做15个零件,乙每小时做10个零件
此题考查分式方程的应用,解题关键在于列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AC=BD 答案不唯一
【解析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.
【详解】
解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD, ∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).
本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.
20、39cm 60cm1
【解析】
根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.
【详解】
∵BE、CE分别平分∠ABC、∠BCD,
∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,
在▱ABCD中,AB=CD,AD=BC,AD∥BC,AB∥CD,
∵AD∥BC,AB∥CD,
∴∠1=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,
∴∠1=∠1,∠DCE=∠CED,∠3+∠BCE=90°,
∴AB=AE,CD=DE,∠BEC=90°,
在Rt△BCE中,根据勾股定理得:BC=13cm,
∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;
作EF⊥BC于F,
根据直角三角形的面积公式得:EF=cm,
∴平行四边形ABCD的面积=BC·EF==60cm1,
故答案为39cm,60cm1.
本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
21、1.
【解析】
由数轴可知,10.a-2<0.再根据绝对值的性质: 和二次根式的性质: 化简即可.
【详解】
解:∵1∴a-1>0.a-2<0.
∴a-1+2-a=1
故答案为:1.
本题考查了绝对值和二次根式的性质,掌握它们的性质是解题的关键.
22、
【解析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
【详解】
解:根据题意得:
,
整理得:;
则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
故答案为:.
本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
23、1
【解析】
根据题意作AD⊥x轴于D,设PB⊥x轴于E,,设出P点的坐标,再结合S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,代入计算即可.
【详解】
解:作AD⊥x轴于D,设PB⊥x轴于E,
∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,
∴设P(m,),则A(2m,),B(m,),
∵点A、B在函数y=(x>0)的图象上,
∴S△OBE=S△OAD,
∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,
∴S△AOB=(+)(2m﹣m)=1,
故答案为1.
本题主要考查反比例函数的面积问题,这是考试的重点知识,往往结合几何问题求解.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)1<AO<4;(3)见解析.
【解析】
(1) O是中点,E是中点,所以OE=BC=;
(2) 在△ACD中利用三角形的第三边长小于两边之和,大于两边只差;
(3) 延长FO交BC于G点,就可以将BE,FD,EF放在一个三角形中,利用三角形两边之和大于第三边即可.
【详解】
(1)解:∵四边形ABCD为平行四边形,
∴BC=AD=3,OA=OC,
∵点E为AB中点,
∴OE为△ABC的中位线,
∴OE=BC=;
(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,
而OA=OC,
∴5﹣3<2AO<5+3,
∴1<AO<4;
(3)证明:延长FO交BC于G点,连接EG,如图,
∵四边形ABCD为平行四边形,
∴OB=OD,BC∥AD,
∴∠OBG=∠ODF,
在△OBG和△ODF中
,
∴△OBG≌△ODF,
∴BG=DF,OG=OF,
∵EO⊥OF,
∴EG=EF,
在△BEG中,BE+BG>EG,
∴BE+FD>EF.
本题主要考查中位线的性质,以及通过构造新的全等三角形,应用三角形两边之和大于第三边性质来比较线段的关系.
25、(1)证明见解析(2)8
【解析】
分析:
(1)连接BD交AC于点O,则由已知易得BD⊥AC,OD=OB=OA=OC,结合AE=CF可得OE=OF,由此可得四边形BEDF是平行四边形,再结合BD⊥EF即可得到四边形BEDF是菱形;
(2)由正方形ABCD的边长为4易得AC=BD=,结合AE=CF=,可得EF=,再由菱形的面积等于两对角线乘积的一半即可求得菱形BEDF的面积了.
详解:
(1)连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC.
∵AE=CF,
∴OA-AE=OC-CF,即OE=OF,
∴四边形BEDF为平行四边形,
又∵BD⊥EF,
∴四边形BEDF为菱形.
(2)∵正方形ABCD的边长为4,
∴BD=AC=.
∵AE=CF=,
∴EF=AC-=,
∴S菱形BEDF=BD·EF=×.
点睛:这是一道考查“正方形的性质、菱形的判定和菱形面积计算的问题”,熟悉“正方形的性质、菱形的判定方法和菱形的面积等于其对角线乘积的一半”是解答本题的关键.
26、(1)一次函数的解析式为y= x-12(2)36
【解析】
分析:(1)先把点C(4,m)代入y=-3x+6得求得m=-6,然后利用待定系数法确定一次函数的解析式;
(2)先确定直线y=-3x+6与x轴的交点坐标,然后利用S△ACD=S△ABD+S△ABC进行计算.
(1)∵y=-3x+6经过点C(4,m)
∵-3×4+6=m
∴m=-6.
点C的坐标为(4,-6)
又∵y=kx+b过点A(8,0)和C(4,-6),
所以,解得
∴一次函数的解析式为y=x-12;
(2)∵y=-3x+6与y轴交于点D,与x轴交于点B,
∴D点的坐标为(0,6),点B的坐标为(2,0),
过点C作CH⊥AB于H,
又∵点A(8,0),点C(4,-6)
∴AB=8-2=6,OD=6,CH=6,
点睛:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2,直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点满足两函数的解析式,也考查了待定系数法求一次函数的解析式.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省常熟市九上数学开学预测试题【含答案】: 这是一份2024-2025学年江苏省常熟市九上数学开学预测试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年湖南广益实验中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南广益实验中学数学九上开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。