所属成套资源:新高考数学一轮复习(举一反三)重难点题型精练专题 (2份打包,原卷版+解析版)
- 新高考数学一轮复习(举一反三)重难点题型精练专题1.10 二次函数与一元二次方程、不等式(2份打包,原卷版+解析版) 试卷 0 次下载
- 新高考数学一轮复习(举一反三)重难点题型精练专题2.1 函数的概念及其表示(2份打包,原卷版+解析版) 试卷 0 次下载
- 新高考数学一轮复习(举一反三)重难点题型精练专题2.5 函数的奇偶性(2份打包,原卷版+解析版) 试卷 0 次下载
- 新高考数学一轮复习(举一反三)重难点题型精练专题2.7 函数的周期性与对称性(2份打包,原卷版+解析版) 试卷 0 次下载
- 新高考数学一轮复习(举一反三)重难点题型精练专题2.9 幂函数与二次函数(2份打包,原卷版+解析版) 试卷 0 次下载
新高考数学一轮复习(举一反三)重难点题型精练专题2.3 函数的单调性与最值(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习(举一反三)重难点题型精练专题2.3 函数的单调性与最值(2份打包,原卷版+解析版),文件包含新高考数学一轮复习举一反三重难点题型精练专题23函数的单调性与最值原卷版doc、新高考数学一轮复习举一反三重难点题型精练专题23函数的单调性与最值解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
1.函数的单调性
(1)单调函数的定义
(2)单调区间的定义
如果函数y=f (x)在区间D上是增函数或减函数,那么就说函数y=f (x)在这一区间具有(严格的)单调性,区间D叫做y=f (x)的单调区间.
2.函数的最值
(1)函数的最大(小)值:
(2)利用函数单调性求最值的常用结论:
①如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减,那么函数y=f(x),x[a,c]在x=b处有最大值f(b),如图(1)所示;
②如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,那么函数y=f(x), x[a,c]在x=b处有最小值f(b),如图(2)所示.
【题型1 求函数的单调区间】
确定函数单调性的四种方法:
(1)定义法:利用函数单调性的定义判断.
(2)导数法:适用于初等函数、复合函数等可以求导的函数.
(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.
(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.
【例1】(2021秋•东海县期中)函数f(x)的单调减区间是( )
A.(0,+∞)B.(﹣∞,0)
C.(﹣∞,0)∪(0,+∞)D.(﹣∞,0)和(0,+∞)
【变式1-1】(2022春•喀什市校级期末)函数y的单调减区间是( )
A.(0,1)B.(0,1)∪(﹣∞,﹣1)
C.(﹣∞,1)D.(﹣∞,+∞)
【变式1-2】(2021春•资阳期末)函数f(x)x的递增区间为( )
A.B.(0,1)C.D.(1,+∞)
【变式1-3】(2021秋•三明期中)函数f(x)=|x﹣2|•(x﹣4)的单调递减区间是( )
A.[2,4]B.[2,3]C.[2,+∞)D.[3,+∞)
【题型2 判断或证明函数的单调性】
【方法点拨】
1.定义法:利用函数单调性的定义讨论函数的单调性.
2.导数法:适用于初等函数、复合函数等可以求导的函数.
3.图象法:根据函数解析式画出函数图象,通过函数图象研究单调性.
注:①复合函数单调性的判断方法:根据复合函数的单调性满足“同增异减”,可判断复合函数的单调性;
②抽象函数单调性的判断方法:一种是“凑”,凑定义或凑已知,从而使用定义或已知条件得出结论;另一种是“赋值”,给变量赋值要根据条件与结论的关系,有时可能要进行多次尝试.
【例2】(2022春•昌平区期末)下列函数中,在区间(0,+∞)上单调递减的是( )
A.B.C.y=2xD.y=lg2x
【变式2-1】(2021春•绵阳期末)下列函数中是减函数且值域为R的是( )
A.f(x)B.f(x)=xC.f(x)=ln|x|D.f(x)=﹣x3
【变式2-2】(2022春•开福区校级月考)下列函数在定义域内是增函数的为( )
A.B.f(x)=e﹣x﹣ex
C.f(x)=lg3|x+1|D.
【变式2-3】(2021秋•青羊区校级月考)给定函数:①,②,③y=x2﹣4x+1,④y=2x﹣1,其中在区间(0,1)上单调递减的函数序号是( )
A.①③B.③C.②③D.①④
【题型3 利用函数的单调性比较大小】
利用函数的单调性比较函数值的大小时,若自变量的值不在同一个单调区间内,则要利用函数的性质,将
自变量的值转化到同一个单调区间上进行比较,对于选择题、填空题通常选用数形结合的方法进行求解.
【例3】(2022春•哈尔滨校级期末)已知函数f(x)=x3,则a=f(0.62),b=f(ln0.6),c=f(20.6)之间的大小关系是( )
A.a<c<bB.a<b<cC.b<c<aD.b<a<c
【变式3-1】(2022春•船山区校级期中)已知函数f(x)满足,对任意x1,x2∈(0,1)有,若△ABC为锐角三角形,则一定成立的是( )
A.f(sinA)>f(csB)B.f(csA)<f(csB)
C.f(sinA)<f(csB)D.f(sinA)>f(sinB)
【变式3-2】(2021秋•营口期末)定义在R上的函数f(x)满足f(x)=f(2﹣x),且∀x1,x2∈(1,+∞),当x1≠x2时都有(x1﹣x2)(f(x1)﹣f(x2))>0,若,b=f(lg4324),c=f(22.5),则a、b、c的大小关系为( )
A.a>b>cB.c>a>bC.c>b>aD.b>c>a
【变式3-3】(2022•广西模拟)已知f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有.记,则( )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a
【题型4 利用函数的单调性解不等式】
根据题目条件,确定函数的单调性,利用函数的单调性将“f”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.
【例4】(2022春•玉溪月考)已知f(x)是定义在[﹣1,1]上的减函数,且f(2a﹣3)<f(a﹣2),则实数a的取值范围是( )
A.(1,2]B.(1,3]C.(1,4]D.(1,+∞)
【变式4-1】(2022•陕西模拟)已知函数y=f(x)在R上单调递减,令g(x)=f(x)﹣x,若g(t)<g(4﹣t),则实数t的取值范围为( )
A.(1,+∞)B.(﹣∞,1)C.(2,+∞)D.(﹣∞,2)
【变式4-2】(2021秋•潍坊月考)已知函数f(x)的定义域为R,其图像关于y轴对称,且f(x)在(﹣∞,0]上单调递增,若f(3a﹣2)>f(2a),则实数a的取值范围是( )
A.或B.或a>2C.D.
【变式4-3】(2021秋•西固区校级期末)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有,且f(2)=0,则不等式xf(x)<0的解集是( )
A.(﹣2,2)B.(﹣2,0)∪(2,+∞)
C.(﹣∞,﹣2)∪(0,2)D.(﹣∞,﹣2)∪(2,+∞)
【题型5 利用函数的单调性求参数】
①已知函数的单调性求参数的取值范围的方法是视参数为已知数,依据函数的图象或单调性的定义,确定函数的单调区间,与已知单调区间比较求参数.
②借助常见函数(如一次函数、反比例函数、二次函数等)的单调性求解.
③需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.
④分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.
【例5】(2021秋•怀仁市校级月考)若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是( )
A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2]
【变式5-1】(2021秋•河西区期末)若函数f(x)在区间(﹣2,+∞)上单调递增,则实数k的取值范围是( )
A.(﹣∞,﹣1)B.{﹣2}C.(﹣∞,﹣2]D.(﹣∞,﹣2)
【变式5-2】(2022•凌源市开学)若函数在R上单调递减,则实数a的取值范围是( )
A.B.(1,2)C.D.
【变式5-3】(2022•泸州模拟)已知函数在定义域上是增函数,则k的取值范围是( )
A.(3,+∞)B.[3,+∞)C.(1,+∞)D.[1,+∞)
【题型6 求函数的最值】
【方法点拨】
1.配方法,主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;
2.换元法,用换元法时一定要注意新元的取值范围;
3.数形结合法,对于图象较容易画出的函数的最值问题,可借助图象直观求出;
4.利用函数的单调性,要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.
【例6】(2022春•成都期末)下列函数中,最小值为2的函数是( )
A.B.y=x2﹣2x+2
C.D.y
【变式6-1】(2022春•铜鼓县校级期末)若函数,则函数g(x)=f(x)﹣4x的最小值为( )
A.﹣1B.﹣2C.﹣3D.﹣4
【变式6-2】(2022春•阎良区期末)设函数在区间[3,4]上的最大值和最小值分别为M,m,则M+m=( )
A.4B.6C.10D.24
【变式6-3】(2022春•贾汪区校级月考)函数f(x)=(x2+2x)(x2+ax+b)满足:对∀x∈R,都有f(1+x)=f(1﹣x),则函数f(x)的最小值为( )
A.﹣20B.﹣16C.﹣15D.0增函数
减函数
定义
一般地,设函数f (x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2
当x1
相关试卷
这是一份新高考数学一轮复习(举一反三)重难点题型精练专题2.5 函数的奇偶性(2份打包,原卷版+解析版),文件包含新高考数学一轮复习举一反三重难点题型精练专题25函数的奇偶性原卷版doc、新高考数学一轮复习举一反三重难点题型精练专题25函数的奇偶性解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份新高考数学一轮复习(举一反三)重难点题型精练专题2.1 函数的概念及其表示(2份打包,原卷版+解析版),文件包含新高考数学一轮复习举一反三重难点题型精练专题21函数的概念及其表示原卷版doc、新高考数学一轮复习举一反三重难点题型精练专题21函数的概念及其表示解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份新高考数学一轮复习(举一反三)重难点题型精练专题1.7 基本不等式(2份打包,原卷版+解析版),文件包含新高考数学一轮复习举一反三重难点题型精练专题17基本不等式原卷版doc、新高考数学一轮复习举一反三重难点题型精练专题17基本不等式解析版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。